Смекни!
smekni.com

Расчет на прочность крыла большого удлинения и шасси транспортного самолета АН–148 (стр. 6 из 9)

Определяем относительный угол закручивания 1го контура. Эпюра qS - известна.

В соответствии с формулой Мора к первому контуру прикладываем единичный момент:

Тогда:

.

Так как обшивка самостоятельно не работает на нормальные напряжения, эпюра

меняется скачком на каждом продольном элементе, оставаясь постоянной между элементами, то от интеграла перейдем к сумме

Определяем относительный угол закручивания сечения крыла при приложении к нему момента М = 1 ко всему контуру. Неизвестными являются q01q02, для их определения запишем два уравнения: уравнение равновесия относительно т.А (нижний пояс переднего лонжерона) и уравнение равенства относительных углов закручивания первого и второго контуров (аналог ур-я совместности деформации).

где

- удвоенные площади контуров.

Для расчета относительных углов воспользуемся формулой Мора. Прикладывая к каждому контуру единичный момент


Таким образом, уравнения для расчета неизвестных

и
примут вид

Решая которые, находим

После нахождения `М1 и`М2, определяем относительный угол закручивания первого контура, от приложения к сечению единичного момента:

Определяем величину крутящего момента в сечении крыла от действующих нагрузок. Поскольку деформирование линейно, угол закручивания прямо пропорционален величине Мкр, тогда:

кНм.

Определяем расстояние от поперечной силы до центра жесткости (рис. 21).

м.

Рис. 21

Заключение о прочности крыла

Исследуя коэффициенты избытка прочности, можно прийти к выводу, что конструкция прочна по всем продольным элементам в сжатой и растянутой зонах и в обшивке, так как величина

>1, причем запас прочности составляет:

- для стрингерного набора 10 - 15%,

- для обшивки 3 – 10%.

На некоторых участках обшивка немного перегружена.

Пояса лонжеронов значительно недогружены.

Проектировочный расчет стоек шасси

Исходные данные

Взлетная масса самолета mвзл=130000 кг;

Посадочная масса самолета mпос= 80000 кг;

Количество основных стоек

;

Количество колес на основной стойке

;

Количество амортизаторов на стойке

;

Геометрические параметры:

.

Подбор колес

Подбор колёс начинаем с выбора типа пневматика. Тип выбираем с учётом условий эксплуатации и значений посадочной и взлетноё скоростей. Так как самолёт эксплуатируется на грунтовых ВПП, то используют пневматики низкого давления.

Далее определяем величину стояночной нагрузки для взлетной и посадочной массы самолёта:

кН;

кН.

По полученным данным из сортамента авиационных колес [2] выбираем колесо КТ-88 с характеристиками:

кН
кН

кН - предельная радиальная нагрузка на колесо;

кН - максимально допустимая нагрузка на колесо;

мм - обжатие пневматика при максимально допустимой нагрузке;

кДж - работа, поглощаемая пневматиком при его обжатии на величину δмд;

кПа - рабочее давление в пневматике.

Так как

, то пересчитаем характеристики колеса по формулам:

кПа

кН

мм

При этом удовлетворяются условия:

Коэффициент грузоподъемности колеса

.

Для коэффициента перегрузки

принимаем значение

;

.

Тогда получим эксплуатационные нагрузки на колесо

кН;

кН.

Так как стойка содержит спаренные колёса, то более нагруженное колесо воспринимает усилие

кН <

Определение параметров амортизатора

Эксплуатационная работа, поглощаемая амортизационной системой при посадке:

,

где

- эксплуатационная вертикальная посадочная скорость, равная

м/с.

Но так как

, то принимаем
м/с.

Тогда

кДж.

Одна стойка воспринимает эксплуатационную работу

кДж.

Вычислив эксплуатационную работу, поглощенную пневматиками при посадке

кДж,

найдем работу воспринимаемую амортизатором

кДж.

Ход амортизатора вычисляем по формуле

м;