Смекни!
smekni.com

Рельсовые цепи с изолирующими стыками (стр. 2 из 4)

Рассредоточение аппаратуры и оборудования вдоль тоннеля имеет ряд негативных особенностей, оказывающих влияние на качество строительства и эксплуатационного обслуживания устройств. Ограничивается возможность применения индустриальных методов, что увеличивает сроки монтажа устройств при строительстве новых линий метрополитена и особенно сдерживает темпы реконструкции на действующих линиях, когда работы выполняют лишь только во время непродолжительного ночного технологического окна. Кроме того, затрудняется использование средств резервирования и телемеханического контроля за работой устройств. В условиях ограниченных размеров тоннеля и высокой интенсивности движения снижается оперативность устранения неисправностей.

Для устранения указанных недостатков была создана централизованная система интервального регулирования движения поездов метрополитена которая предусматривает вынос аппаратуры из тоннеля и ее централизованное размещение на станции. Сосредоточение аппаратуры на станции позволяет применять более прогрессивные и экономичные методы строительства и обслуживания устройств, решить ряд технических, экономических и социальных задач.

При проектировании строящихся линий метрополитена и реконструкции действующих линий во всех случаях применяется централизованное размещение аппаратуры.

Для улучшения технического обслуживания в каждом релейном помещении устанавливается контрольное табло, предназначенное для электромехаников СЦБ. На табло установлены сигнальные лампы, индицирующие состояние рельсовых цепей, огней светофоров, линейных реле автоблокировки и различных контрольных реле, что значительно облегчает и сокращает время обнаружения неисправности в устройствах СЦБ.

Сосредоточение аппаратуры на станциях облегчает эксплуатационное обслуживание устройств, сокращает время пребывания обслуживающего персонала в тоннеле во время движения поездов.

Для контроля рельсовой линии при централизованном размещении аппаратуры было разработано несколько типов рельсовых цепей. Пропуск тягового тока в обход изолирующих стыков для всех типов РЦ с централизованным размещением аппаратуры выполнен с помощью дроссель-трансформаторов ДТМ-0,17. Дроссель-трансформаторы устанавливаются на питающем и релейном концах, а аппаратура РЦ подключается к дополнительной обмотке кабельной линией.

В схеме РЦ с централизованным размещением аппаратуры и путевыми приемниками типа ДСШ-2 (рис.2.10) кабельная линия представлена в виде резисторов R*кп и R**кп на питающем конце и R*кр R**кр на релейном.


Рис.2.10 Схема рельсовой цепи при централизованном размещении аппаратуры.

Рельсовая цепь получает питание от трансформатора ПТ типа ПОБС-5А. На его первичную обмотку подается напряжение 220 В. В цепь вторичной обмотки включены дроссель L1 и конденсатор С1. Дроссель L1 типа РОБС-3А уменьшает степень утечки токов АРС через обмотку питающего трансформатора, а конденсатор С1 емкостью 30 мкФ обеспечивает настройку питающего конца в резонанс на частоте 50 Гц.

Для обеспечения требуемого сопротивления питающего конца применен согласующий трансформатор СТ типа ПОБС-2А, включаемый в цепь первичной обмоткой по схеме автотрансформатора. В качестве путевого приемника используются два путевых реле ДСШ-2. Отличительной особенностью РЦ является то, что путевые элементы реле соединены параллельно, а местные последовательно, поскольку на них подается напряжение 220 В.

Рассмотренная схема при длине РЦ до 300 м позволяет установить аппаратуру питающего и релейного концов на расстоянии до 2400 м от места подключения к рельсам без дублирования жил кабеля.

Отличительной особенностью схемы РЦ, изображенной на рис.2.11, является включение резонансного контура в выходной цепи путевого генератора сигналов АРС, настраиваемого в резонанс на каждую из сигнальных частот. Благодаря этой отличительной особенности данная РЦ называется резонансной рельсовой цепью (тип Ш-33/ЦУ).

Рельсовая цепь питается от трансформатора ПТ типа ПОБС-3А. Конденсатор С1 емкостью 10 - 12 мкФ служит ограничителем сигнального тока РЦ, и с его помощью питающий конец настраивается в резонанс на частоте 50 Гц. В качестве путевого приемника используются два реле ДСШ-2, путевые обмотки которых включены параллельно. Конденсатор С4 емкостью 4 - 16 мкФ предназначен для получения необходимого фазового угла между током в путевой обмотке и напряжением на местной обмотке путевого реле.

Рис.2.11 Схема резонансной рельсовой цепи при централизованном размещении аппаратуры.

Фильтр-пробка на частоту 50 Гц в выходной контур генератора АРС не устанавливается, поскольку сопротивление этого контура на промышленной частоте относительно велико из-за наличия емкостей в его составе.

При передаче кодового сигнала АРС частотой 75 Гц в цепь резонансного контура включается фильтр-”пробка”, настроенный на третью гармонику этой частоты (225 Гц), который состоит из реактора L2 и конденсатора С2.

Для уменьшения влияния сигнала АРС частотой 75 Гц на работу путевых реле, приводящего к зуммированию их секторов, на приемном конце включен режекторный фильтр-пробка на эту частоту, образованный из параллельно включенных конденсатора С3 емкостью 30 мкФ и реактора РОБС-3А.

На рис.2.12 представлена схема резонансной РЦ с двухсторонним кодированием.

Рис.2.12. Схема рельсовой цепи при централизованном размещении аппаратуры и двухстороннем кодировании.

В этой схеме резонансной РЦ двухсторонняя посылка кодовых сигналов АРС с питающего и релейного концов осуществляется, как правило, на участках, расположенных в пределах станций с путевым развитием, где максимальная скорость не реализуется и кодовый сигнал АРС частотой 75 Гц в рельсы не передается. Поэтому на схеме отсутствует фильтр-”пробка’ на релейном конце. Переключение выходного контура путевого генератора АРС в зависимости от направления движения поезда осуществляется контактами реле направления РН.

Для нужд метрополитена налажен выпуск серийной аппаратуры для передачи сигналов АРС, в том числе и блока ФП-АЛСМ, представляющего собой набор катушек индуктивности и конденсаторов для создания резонансного контура на частотах АРС (рис.2.13).

Рис.2.13. Схема рельсовой цепи при централизованном размещении аппаратуры и одночастотном кодировании с помощью типового блока ФП-АЛСМ.


Для проверки отпускания якорей управляющих реле системы АРС смежной РЦ их тыловые контакты включены в цепь питания местных обмоток путевых реле. Управляющие реле предыдущей по ходу движения поезда РЦ отпускают якоря при занятии данной РЦ и тыловыми контактами создают цепь возбуждения путевых реле П1 и П2 после освобождения РЦ. Когда путевые реле встают под ток, то цепь возбуждения дублируется через собственный фронтовой контакт одного из реле. После этого возбуждение управляющих реле не приведет к обесточиванию путевых. Если же после прохода поезда по неисправности какое-либо управляющее реле остается возбужденными, то это легко определяется по отсутствию тока в путевом приемнике данной РЦ.

Для линий с рельсовыми цепями переменного тока частотой 50 Гц с изолирующими стыками была разработана система дублирующих автономных устройств (ДАУ-АРС). В этой системе для резервирования используется комплект поездных устройств АРС хвостового вагона. При отказе устройств в головном вагоне машинист специальным переключателем переходит в режим ДАУ, в котором сигнализация и воздействие на внутреннюю автоматику поезда осуществляются от комплекта АРС хвостового вагона. В нормальном режиме работают оба комплекта поездных устройств АРС.

Рис.2.14. Схема рельсовой цепи с наложением кодовых сигналов АРС по системе ДАУ-АРС.


Сигналы АРС в системе ДАУ-АРС посылаются в рельсовую линию навстречу и в хвост поезда (рис.2.14). При этом благодаря пространственному разделению в системе ДАУ-АРС для кодирования в голову и в хвост используются те же сигнальные частоты 75, 125, 175, 225 и 275 Гц.

В хвост поезда передаются кодовые сигналы, соответствующие допустимой скорости на впередилежащей рельсовой цепи. Это позволяет обеспечивать в нормальном режиме основную и предупредительную сигнализацию, т.е. сигнализацию о допустимой скорости на данной и последующей рельсовых цепях.

Для передачи кодовых сигналов системы ДАУ-АРС в хвост поезду применяется дополнительный комплект путевой аппаратуры АРС или комплект передающей аппаратуры АРС впередилежащей рельсовой цепи (см. рис.2.14). Передача кодовых сигналов АРС в хвост поезда обуславливает необходимость также посылки специального кодового сигнала об установленном (правильном) направлении движения для исключения возможности движения в неправильном направлении по сигналам АРС. Для этого в рельсовую линию в определенных местах в хвост поезда передается сигнал частотой 325 Гц, который не воспринимается головным комплектом поездных устройств АРС.

Система ДАУ-АРС получила ограниченное применение на линиях метрополитенов в связи с тем, что рельсовые цепи переменного тока частотой 50 Гц при новом проектировании и реконструкции линий метрополитенов заменяются на бесстыковые рельсовые цепи.

4. Регулировка

Регулировка РЦ частотой 50 Гц различной длины заключается в выборе необходимого напряжения питающего трансформатора, установления требуемых фазовых соотношений на путевом реле, а также в обеспечении чередования мгновенных полярностей сигнальных токов смежных рельсовых цепей.