Смекни!
smekni.com

Судовые вспомогательные механизмы (стр. 2 из 9)

Осевые насосы широко применяют в шлюзах судоходных каналов. На судах осевые насосы применяют в качестве циркуляционных насосов главных конденсаторов, в балластных системах транспортных судов и плавучих доков, в качестве водоотливных, для создания подпора на линии всасывания грузовых насосов танкеров, в водометных движительно-рулевых устройствах, а также в подруливающих устройствах крупных судов.

Вихревые насосы относятся к динамическим насосам трения. Напор вихревого насоса в 3—7 раз больше, чем центробежного,при тех же размерах и частоте вращения. Большинство вихревых насосов отличается свойством самовсасывания. Вихревые насосы могут работать на смеси жидкости и газа. Они непригодны для работы на жидкостях, содержащих твердые частицы, так как при этом быстро увеличиваются торцовые и радиальный зазоры на перемычке, что приводит к снижению подачи и к. п. д. Их изготовляют на небольшие подачи (до0,01м3/с) и большие напоры (до 250 м). Коэффициент быстроходности вихревых насосов находится в пределах 6—40. Их применяют для перекачивания жидкости и газа. На судах вихревые насосы применяются в санитарных, питательных системах, в холодильных установках

Вихревые насосы бывают закрытого и открытого типа. Наиболее широкое применение на судах получили вихревые насосы закрытого типа.

Принцип действия вихревого насоса. При вращении рабочего колеса в его ячейках возникает поток, обладающий радиальной и окружной составляющими скорости. Под действием центробежной силы поток выходит из ячеек и поступает в канал, сообщая импульс силы в направлении вращения колеса находящейся в канале жидкости. Одновременно с выходом потока из ячеек в них поступает новое количество жидкости у корневой части лопаток.

При движении жидкости в ячейке ее энергия повышается, и жидкость вновь выбрасывается в канал. В результате многократного обмена энергия жидкости в канале повышается по мере удаления от всасывающего патрубка.

В связи с тем, что частицы жидкости движутся в канале с разными скоростями, наблюдаются интенсивное вихреобразование и значительные потери энергии.

Струйным называется динамический насос трения, в котором жидкая среда перемещается внешним потоком жидкой среды. Для перемещения перекачиваемой жидкой среды необходимо передать ей энерегию внешнего потока.Передача энергии от одного потока другому производится силами действующими на поверхности рабочей струи.

Принцип действия струйного насоса заключается в следующему Рабочая струя выходит из сопла с высокой скоростью. В результате взаимодействия сил турбулентного трения, вызывающего появление вихрей рабочей струи и перемещаемой среды, во входном сечении камеры смешения устанавливается давление р1г, которое ниже давления перемещаемой среды рвх. Сложение вихревого и поступательного движения создает по теореме Кутта — Жуковского подъемную силу, поперечную по отношению к поступательному движению. В результате разности давлений перемещаемая среда поступает в камеру смешение через приемную камеру. В приемную камеру рабочая струя и перемещаемая среда входят в виде двух раздельных потоков. В общем случае они могут различаться по скорости, температуре, плотности и агрегатному состоянию. При смешении турбулентных потоков эти параметры приобретают осредненные значения по живому сечению.

Различают следующие виды струйных насосов. По состоянию взаимодействующих сред—равнофазные, разнофазные и с изменяющейся фазностью одной из сред; по свойствам взаимодействующих сред - со сжимаемыми средами, с несжимаемыми и сжимаемо-несжимаемы ми (разнофазные); по назначению — эжекторы, откачивающие среду из какого-либо резервуара, и инжекторы, подающие среду в резервуар.

Основное достоинство струйных насосов заключается в простоте конструкции. Они не имеют движущихся частей и несмотря на низкий к. п. д., получили широкое применение. Струйные насосы удобно использовать в труднодоступных местах, они надежно работают на загрязненных и агрессивных жидкостях, обладают свойствами самовсасывания. В связи с простотой и компактностью струйные насосы часто применяют в качестве подпорных на входе в лопастные насосы для предотвращения кавитации. На речных судах струйные насосы используют в качестве вакуум-насосов для удаления воздуха из крупных центробежных насосов перед их пуском. Однако наиболее широко струйные насосы (эжекторы) применяются в осушительной и водоотливной системах для удаленияводы из трюмов.

5. Объёмные насосы: поршневые, шестерённые, винтовые, пластинчатые, радиально- и аксиально-поршневые. Классификация, принцип действия, устройство, обслуживание в работе. Область применения

Поршневым называют возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней.

Поршневые насосы классифицируют следующим образом: по количеству поршней— одно-, двух-, трех- и многопоршневые; по числу циклов нагнетания и всасывания за один двойной ход поршня — одностороннего и двухстороннего действия (плунжерные насосы бывают только одностороннего действия); по характеру движения ведущего звена насоса — поступательно-поворотные с возвратно-поворотным движением; вальные с вращательным движением; известны также дифференциальные насосы, у которых жидкая среда заполняет замкнутую камеру при движении рабочего органа в обе стороны и вытесняется из нее при движении рабочего органа в одну сторону.

В условиях эксплуатации на судах поршневые насосы имеют ряд преимуществ по сравнению с насосами других типов. К достоинствам поршневых насосов относятся: способность самовсасывания («сухого» всасывания); возможность достижения высоких давлений; способность перекачивания разнообразных жидкостей при различных температурах, в том числе многокомпонентных сред большой вязкости; к. п. д.; простота конструкции и надежная работа прямодействующих насосов, которые при наличии на судне парового котла не требуют специальных двигателей.;

саморегулирование числа ходов при повышении давления в трубопроводе у прямодействующих насосов. К недостаткам поршневых насосов относятся: неравномерность подачи и колебание давления; большие габариты и масса;

большой расход пара (20—60 кг/ч на 736 Вт) у прямодействующих насосов;

необходимость применения воздушных колпаков и контроля работы;

резкое снижение подачи при работе на жидкостях, отличающихся высоким давлением насыщенных паров.

В шестеренном насосе жидкость перекачивается посредством вращающихся шестерен, находящихся в зацеплении. Шестеренные насосы выполняют с внутренним или внешним зацеплением, с прямозубыми, косозубыми и шевронными шестернями. У косозубых и шевронных шестерен зацепление происходит не сразу по всей ширине, как у прямозубых, а постепенно. Такие насосы менее чувствительны к погрешностям изготовления и монтажа, меньше изнашиваются и работают плавно и бесшумно, обладают высокой равномерностью подачи

На судах распространены шестеренные насосы с внешним зацеплением. Шестерни насоса находятся под действием разности давлений в полостях нагнетания и всасывания. Кроме того, на них действует реакция от вращающего момента на ведущей шестерне. Результирующая этих сил определяет радиаленую нагрузку подшипников насоса. Наиболее нагруженными оказываются подшипники ведомой шестерни.

В шестеренных насосах с коэффициентом перекрытия зацепления, большим единицы, и в насосах, не имеющих зазоров при зацеплении, происходит запирание жидкости во впадинах. При таком зацеплении часть жидкости оказывается запертой во впадине шестерни входящим в нее зубом. Уменьшение запертого объема, сопровождающееся сжатием жидкости, приводит к появлению дополнительной радиальной пульсирующей нагрузки на шестерни, валы и подшипники. Объемный КПД шестеренного насоса равен 0,7—0,85. По мере изнашивания деталей это значение уменьшается. Потери энергии на трение также велики; они обусловлены трением торцов шестерен о боковые диски, трением в подшипниках и уплотнении. Развитые поверхности трения вызывают значительные механические потери, поэтому механический КПД не превышает 0,6—0,7.