Расчёт характеристик летательного аппарата (стр. 1 из 7)

Министерство образования Российской Федерации

Кафедра аэродинамики

Пояснительная записка к курсовому проекту

по предмету

"Механика жидкости и газа"

Выполнил студент гр. .

Руководитель курсового проекта

Оценка___________________________

Подпись преподавателя_____________

«______»_________________________

Самара


Реферат

Курсовой проект

Пояснительная записка: 35 стр., 12 рис., 18 табл., 1 источник

ПРОФИЛЬ КРЫЛА, КОНФОРМНОЕ ОТОБРАЖЕНИЕ, ДУЖКА, РУЛЬ ЖУКОВСКОГО, ТЕОРЕТИЧЕСКИЙ ПРОФИЛЬ НЕЖ, ПОГРАНИЧНЫЙ СЛОЙ, ЛЕТАТЕЛЬНЫЙ АППАРАТ, СОПРОТИВЛЕНИЕ ТРЕНИЯ, СОПРОТИВЛЕНИЕ ДАВЛЕНИЯ, УГОЛ АТАКИ, ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ, КОЭФФИЦИЕНТ ПОДЪЕМНОЙ СИЛЫ, ФОКУС ЛЕТАТЕЛЬНОГО АППАРАТА

Цель курсового проекта заключается в построении теоретического профиля НЕЖ и определении сквозных характеристик заданного летательного аппарата.

Построение теоретического профиля НЕЖ ведется по конформному отображению, предложенному Жуковским.

Расчет сквозных характеристик проводится по известным методикам с использованием экспериментальных данных о величине аэродинамических коэффициентов для различных форм летательных аппаратов.


Введение

В данном курсовом проекте проводится построение теоретического профиля НЕЖ и определение аэродинамических характеристик заданного летательного аппарата.

Форма заданного летательного аппарата представляет собой сочетание конических и цилиндрических поверхностей. Элементы конструкции безотрывно обтекаемые пограничным слоем, являются источником сопротивления трения.


1 Построение теоретического профиля НЕЖ

1.1 Постановка задачи

Построить теоретический профиль НЕЖ для окружности, центр которой смещен в точку

с координатами
.

1.2 Построение теоретического профиля НЕЖ

Под крыловым профилем понимают плавный, вытянутый в направлении набегающего на него потока, замкнутый и самонепересекающийся геометрический контур с закругленной передней кромкой ("лоб" профиля) и заостренной задней кромкой ("хвост" профиля).

Отрезок прямой, соединяющей некоторую точку передней кромки с вершиной угла на задней кромке, называют хордой крылового профиля, а длину хорды – длиной профиля. Максимальную толщину профиля в направлении, перпендикулярном к хорде, называют толщиной профиля, а отношение толщины к длине – относительной толщиной крылового профиля. Угол, образованный вектором скорости набегающего потока вдалеке от профиля (вектором скорости "на бесконечности") и направлением хорды, носит наименование угла атаки.

Жуковский первый рассмотрел применение конформного отображения в теории профиля. Он предложил простую функцию преобразования внешности круга во вспомогательной плоскости на внешность замкнутого профиля в плоскости течения:

.(1)

Функцию (1.1) можно записать в симметричной форме:


.(2)

Применяя функцию (1.1) к областям вспомогательной плоскости, внешним по отношению к окружностям с центрами, несовпадающими с началом координат, будем получать обтекание разнообразных профилей, отличных от эллипсов.

Если центр окружности смещен по вертикали, но проходит через точки

и
, то в физической плоскости
эта окружность отобразится на часть окружности, которую называют дужкой (рисунок 1):

Рисунок 1 – Дужка

Сместим теперь центр окружности влево по действительной оси

и потребуем, чтобы окружность проходила через точку
(рисунок 2). Тогда в физической плоскости
этот круг перейдет в симметричный профиль, называемый рулем Жуковского (рисунок 2):

Рисунок 2 – Руль Жуковского

Пусть центр окружности находится во второй четверти, и окружность проходит через точку

(рисунок 3). Соединим центр окружности
с точкой
и найдем точку пересечения прямой
с мнимой осью
. Приняв точку пересечения
за центр окружности, проведем через нее новый круг (рисунок 3). В физической плоскости
окружность радиуса
перейдет в дужку, а окружность радиуса
перейдет в фигуру, которая получается направлением руля Жуковского вокруг получившейся дужки. В итоге получаем теоретический профиль НЕЖ. Дужка этого профиля практически совпадает со средней линией профиля (рисунок 3):

В нашем случае центр окружности

находится во второй четверти в точке
с координатами
. Окружность проходит через точку
с координатами
. Проведем во вспомогательной плоскости
оси
и
с началом в центре
.

Рисунок 3 – Теоретический профиль НЕЖ

Соединяем точку

с точкой
прямой
. Прямая
составляет с действительной осью
угол
. Соединим точку
с тоской
, принадлежащей окружности
, прямой
и обозначим через
угол между прямой
и действительной осью
(смотри рисунок 4):

Рисунок 4 – Исходные данные

Для построения теоретического профиля НЕЖ воспользуемся функцией (1):

,

где

.(3)

Для начала найдем функцию

в общем виде, подставив в функцию (1.1) выражение (3). Так как
, то будем иметь:

.(4)

Определим чему равны

и
. Запишем в параметрическом виде функцию круга с условием, что его центр находится в начале координат:

.

Если центр окружности смещен, то ее функция имеет вид:


Copyright © MirZnanii.com 2015-2018. All rigths reserved.