Смекни!
smekni.com

Проектирование судов Теория проектирования (стр. 2 из 14)

Кроме нормативного существуют и другие подходы к делению процесса проектирования и группировке его стадий. Наиболее полным и соответствующим составу ТПС является следующее деление (табл. 2).

Весь процесс разработки проекта разделяется на проектирование и разработку рабочей документации. В свою очередь проектирование судна делится на внешний и внутренний этапы. В соответствии со спецификой решаемых вопросов этап внутреннего проектирования состоит из двух уровней, соответствующих уровням внутренней задачи ТПС.

Развитие теории проектирования судов

Вплоть до середины XVIII века суда строились без какого-либо предварительного проектирования, ориентируясь только на существующее судно (так называемый прототип), хорошо зарекомендовавший себя в процессе эксплуатации. Неудивительно, что до этого периода внешний вид и общее расположение судов менялись очень медленно.

Первые попытки предварительного определения элементов судна, были связаны с построением обводов судна. Возможность проектных расчетов были обусловлены развитием методов интегрального исчисления. Этот период становления ТПС связан с именами шведского адмирала Ф.-Г. Чапмена, английского кораблестроителя А.Дина, академика Эйлера и корабельного инженера М.М. Окунева.

Заметный толчок в развитии дали переход от деревянного к металлическому судостроению и замена парусных движителей механическими энергетическими установками. Отсутствие прототипов вынудило искать способы предварительного расчета элементов и характеристик судна. Именно к этому периоду относятся появление методов строительной механики, расчетов ходкости, остойчивости, непотопляемости и т.п. Большой вклад в развитие ТПС в этот период внесли русские кораблестроители С.О. Макаров, И.Г. Бубнов, К.П. Боклевский, А.А.Попов, американский исследователь У. Ховгаард, французского инженера Ж.-О. Норманн.

Первый опыт обобщения накопленных знаний был предпринят К.П. Боклевским, первым деканом кораблестроительного факультета Санкт-Петербургского политехнического института, опубликовавшим в 1905 г. материалы по курсу проектирования судов. В дальнейшем трудами В.Л. Поздюнина, Л.М. Ногида, В.В. Ашика, А.В. Бронникова ТПС превратилась в самостоятельную науку, базирующуюся на достижениях математики, физики, гидромеханики, теории корабля, строительной механики и т.д. Круг задач, решаемых современной ТПС, обозначен выше. За границей ТПС длительное время оставалась составной частью других судостроительных дисциплин – корабельной архитектуры и теории корабля.

Конкурсный подход к выбору предварительных проектов (технического предложения) заставил проектантов искать способы сокращения продолжительности проектирования. Одним из таких способов является создание базового проекта с определенным набором показателей, которые по желанию заказчика можно было бы легко изменить. Наличие такого проекта позволяет, в условиях ограниченного времени, провести более точные расчеты, что немаловажно в условиях конкуренции. Такой исследовательский подход к проектированию позволил накопить данные о связи элементов судна с его характеристиками. Большой помощью в создании баз данных таких проектов явилось появление средств автоматизированного проектирования (САПР).

В середине 70-х годов была сформулирована концепция CALS-технологий, основанная на требованиях к непрерывной информационной поддержке жизненного цикла изделия (Continuous Added Life cycle Support). Данные технологии, направленные на повышение эффективности производства, сейчас используются во всех отраслях науки и техники. Применительно к ТПС возможности использования CALS-технологий сводятся, например, к созданию электронного паспорта судна, где собраны все данные о его элементах и характеристиках и их изменении в процессе эксплуатации судна. Накопление таких данных способствует созданию более совершенных расчетных методик, основанных на статистических закономерностях, сокращению времени на проектирование, удешевлению процесса проектирования, строительства и ремонта судов.

В конце ХХ века, задачи ТПС расширились. Во-первых, плановое хозяйство СССР, предопределило появление внешней задачи ТПС и связанные с ней проблемы оптимизации состава целых флотов. Во-вторых, от создания судна как самостоятельной транспортной единицы, проектанты перешли к созданию транспортных систем, включающих наземный транспорт, порт и суда-перевозчики. Такое комплексное проектирование отражает современное состояние ТПС.

Пересчет элементов плавучести и остойчивости судна по прототипу

Определение ряда показателей мореходных качеств проектируемого судна путем пересчета с прототипа играет существенную роль в ТПС.

- позволяет рассчитать эти показатели, минуя расчеты по теоретическому чертежу, то есть еще до его построения;

- уменьшает трудоемкость, а следовательно продолжительность расчетов. Это дает возможность оценить мореходные качества судна, сравнить их c требуемыми по заданию на проектирование и отсечь заранее неприемлемые решения.

- Структура формул пересчета позволяет установить характер влияния элементов на показатели мореходных качеств проектируемого судна.

В то же время точность этого метода уступает точности прямых расчетов по теоретическому чертежу, поэтому достоверные результаты могут быть получены только при использовании близкого прототипа.

Для получения удовлетворительных результатов расчета необходимо выполнение условия геометрического подобия формы корпуса прототипа и проектируемого судна. В первую очередь, условие подобия предполагает равенство коэффициентов полноты, то есть:

d = d0; a = a 0; b = b0,

где индексом "0" обозначены величины, относящиеся к прототипу.

Различают полное и частичное подобие. При полном подобии сопоставляемых судов должно выполняться условие

L/L0 = B/B0 = T/T0 = l,


где λ – модуль подобия. При частичном (аффинном) подобии

L/L0 = l; B/B0 = b; T/T0 = t; lb t.

Пересчет элементов плавучести и начальной остойчивости может быть осуществлен по двум способам – на основе структуры физических формул между характеристиками и элементами судна и путем замены в формулах теории корабля элементов проектируемого судна элементами прототипа с переходными модулями. Например для водоизмещения

V = dLBT = d lL0 bB0 tT0 = lbtd L0B0T0 = lbtV0

или по зависимости теории корабля

.

Момент инерции площади ВЛ Ix можно представить как часть момента инерции прямоугольника LB,

или по формулам теории корабля

.

При ненулевых углах крена при выводе формул пересчета необходимо учитывать изменение углов и длин отрезков в зависимости от изменения размерений проекта по отношению к прототипу.

Рассмотрим, как соотносятся углы крена прототипа и проектируемого судна. Пусть действующая ватерлиния прототипа описывается прямой А0В0, расположенной под углом Θ0 к оси y (см. рис. 1). Тогда,

.

При изменении масштаба по оси y в b раз, а по оси z в t раз, точки А0 и В0 перейдут в точки А и В, с координатами А (0; tzА0) и В (byВ0; tzВ0). Тогда,

.

Аналогично можно найти, как соотносятся длины отрезков прототипа и проекта. Пусть а0 = А0В0 – длина какого-то отрезка прототипа, расположенного под углом Θ0 к оси у (см. рис. 2). Проекция отрезка на эту ось,


А0С0 = а0СоsQ0.

При изменении масштаба вдоль оси у в b раз отрезок трансформируется в а' = А'В', расположенный под углом Θ'. При этом его проекция на ось у,

А'С' = b(А0С0) = b а0СоsQ0.

Изменение масштаба по оси z в t раз переместит точки А', В' и С', соответственно в А, В и С. Отрезок а = АВ, расположенный под углом Θ к оси у будет связан с а0 следующими соотношениями: