Смекни!
smekni.com

Электронные компоненты системы зажигания принципы работы, конструкция, параметры, характеристик (стр. 2 из 4)

Провода ПВППВ и ПВППВ-40 имеют аналогичную конструкцию и отличаются только применяемыми в них материалами.

Для бесконтактных систем зажигания автомобилей ВАЗ применяется провод синего цвета ПВВП-40 с силиконовой изоляцией с сопротивлением 2,55 кОм/м и рабочим напряжением до 40 кВ. Провода зарубежного производства имеют из-за повышенных требований по помехоподавлению более высокие величины сопротивления (у проводов фирмы Motorcraft - 11 кОм/м). Установка проводов с повышенным сопротивлением может привести к перебоям в работе зажигания. Помехоподавительные резисторы, которые выпускаются в расчете на сопротивления от 5 до 13 кОм, соединяются со свечой или с распределителей. Резистор может встраиваться в свечной экранированный наконечник

Свечи зажигания.

Рис. 1. Свеча зажигания: 1 — контакт; 2 — изолятор; 3 — корпус; 4 — электропроводное стекло; 5 — уплотнение; 6 — центральный электрод; 7 — боковой электрод

Свечи зажигания служат для воспламенения топливовоздушной смеси. При увеличении напряжения вторичной цепи до величины пробоя искровой промежуток между центральным и боковым электродами свечи зажигания становится токопроводящим, запасенная энергия катушки зажигания преобразуется в искру, воспламеняющую топливовоздушную смесь. Величина напряжения пробоя искрового промежутка зависит от зазора между электродами, от геометрии электродов, от давления в камере сгорания и от коэффициента избытка воздуха смеси в момент воспламенения. С ростом давления в камере сгорания напряжение пробоя увеличивается. Важными параметрами свечей зажигания являются калильное число и длина искрового промежутка. Калильное число характеризует количество тепла, которое может отводить свеча зажигания из камеры сгорания. Свеча зажигания с низким калильным числом плохо отводит тепло, сильно нагревается за время рабочего хода поршня и не успевает остыть до того, как следующая порция топливовоздушной смеси поступит в цилиндр. Вследствие этого происходит преждевременное, калильное (не от искры) зажигание. Если же детали свечи зажигания остаются слишком холодными (высокое калильное число), то свеча теряет способность к самоочищению, нагар загрязняет электроды и изолятор, что может привести к возникновению перебоев в искрообразовании. Оптимальная рабочая температура для самоочищения свечи — от 400 до 900оС. Длина искрового промежутка влияет на качество сгорания топливовоздушной смеси. Чем больше искровой промежуток, тем увереннее происходит ее воспламенение. Но максимальное значение межэлектродного расстояния ограничивается максимально допустимым значением вторичного напряжения катушки зажигания, скоростью нарастания вторичного напряжения, которое, в свою очередь, определяется конструктивными особенностями катушки зажигания, высоковольтных проводов и свечей зажигания. Свечи зажигания, устанавливаемые на впрысковые вазовские автомобили (А17ДВРМ, АУ17ДВРМ), имеют следующие характеристики: — калильное число — 17; — длина искрового промежутка — 1—1,1 мм; — встроенный помехоподавляющий резистор.

Датчик положения коленвала (ДПКВ)

Чтобы обеспечить оптимальное управление двигателем, контроллер системы управления должен всегда знать точное положение поршней в цилиндрах двигателя относительно ВМТ. Для этой цели шкив привода генератора дополнили зубчатым венцом (рис. 2). Расчетное количество зубьев на венце 60, при этом два из них отсутствуют. Угловое расстояние между зубьями составляет 6о. В паре с зубчатым шкивом работает ДПКВ, установленный на кронштейне крышки масляного насоса. Воздушный зазор между ДПКВ и зубчатым венцом составляет 0,7—1,1 мм. Датчик состоит из постоянного магнита и обмотки с сердечником. При вращении зубчатого венца изменяется магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке. Амплитуда импульсов увеличивается с ростом частоты вращения коленвала. На величину амплитуды импульсов влияет также расстояние между датчиком и зубчатым венцом. Шкив установлен на валу так, что при совмещении середины первого зуба венца с осью ДПКВ поршни первого и четвертого цилиндров находятся строго за 114о до ВМТ. С началом прокрутки двигателя контроллер анализирует сигнал ДПКВ, пытаясь выделить два пропущенных зуба на венце шкива (после пропущенных идет первый зуб). Как только это происходит (контроллер засинхронизировался), становится возможным расчет угла опережения зажигания, расчет фаз впрыска топлива и управление модулем зажигания и форсунками (рис. 3). Сигнал ДПКВ используется также для расчетов скорости вращения коленвала и его ускорения.



Рис 3: а — сигнал датчика положения коленчатого вала; b — сигнал датчика фаз; с — сигнал управления с контроллера на модуль зажигания; d — напряжение во вторичной цепи модуля зажигания; ВМТ1 — верхняя мертвая точка первого цилиндра на такте сжатия; 1 — угол опережения зажигания; 2 — время накопления энергии в катушке зажигания

Контроллер системы управления двигателем

Главная часть системы впрыска — контроллер системы управления двигателем. Контроллер (от английского control — “управление”) является коммуникационным и вычислительным центром системы — в зависимости от сигналов датчиков, по заранее определенным алгоритмам, он выдает управляющие воздействия на исполнительные устройства системы управления.

Конструктивно контроллер выполнен в виде металлического корпуса, внутри которого находится печатная плата с электронными компонентами. Жгут проводов от датчиков, исполнительных устройств и бортовой сети автомобиля подключается к контроллеру многополюсным штекерным разъемом. Контроллер системы управления двигателем работает в тяжелых условиях: широкий диапазон температуры окружающей среды (от —40 до +80оС); широкий диапазон влажности воздуха; высокая вибрация и т. д. Поэтому особые требования предъявляются к электронным компонентам и конструкции контроллера. Такие же высокие требования предъявляются к электромагнитной совместимости: чувствительности к внешним помехам и ограничению излучения собственных высокочастотных помех.




Если рассматривать структуру современного контроллера (см. схему), то видно, что он состоит из следующих основных частей:

— процессорная часть (микроЭВМ);

— формирователи входных сигналов;

— формирователи выходных сигналов;

— источник питания.

Процессорная часть контроллера

Это именно та часть, где происходит все самое главное в работе контроллера. Основой процессорной части является однокристальная микроЭВМ. Она называется так из-за того, что большинство компонентов микропроцессорной структуры находятся на одном кристалле микросхемы (чипе). В контроллерах СУД используются 8-, 16- или 32-разрядные микроЭВМ. Разрядность — это количество бит информации, с которыми она оперирует. Основные компоненты микроЭВМ:

— центральный процессор. Производит выборку команд и данных из памяти программ и памяти данных, производит арифметические и логические операции над данными, управляет сигналами на внутренней шине адреса и данных.

— Постоянное запоминающее устройство (ПЗУ). То место, где хранится программа и данные в виде констант. Программа — переведенная на язык машинных кодов микроЭВМ совокупность всех алгоритмов управления СУД. Данные — калибровочные таблиц константы, которые участвуют в процессе расчетов или выбираются как управляющие параметры. Для разных типов СУД, использующих одинаковые контроллеры, записывается своя программа или свой набор данных. Информация в ПЗУ может храниться сколь угодно долго, независимо от того, работает контроллер или хранится на складе. Для записи программы и данных используются специальные устройства, которые называются программаторами.

— Оперативное запоминающее устройство (ОЗУ). Область памяти, где хранятся данные, которые в процессе работы изменяются. Это могут быть промежуточные результаты вычислений или значения, полученные от датчиков. В отличие от ПЗУ, информация в ОЗУ теряется после выключения питания контроллера. Чтобы сохранить данные, которые накапливаются в процессе работы контроллера и участвуют в расчетах как параметры адаптации алгоритмов к конкретному двигателю, в контроллерах существует так называемое энергонезависимое ОЗУ. Оно запитывается от отдельного источника питания, подключаемого непосредственно к аккумуляторной батарее. В режиме хранения это энергонезависимое О3У потребляет очень незначительное количество энергии, что не может привести к разряду батареи, так как ток потребления в этом случае сравним с током саморазряда. Недостатком такого типа энергонезависимого ОЗУ является то, что процесс адаптации возобновляется каждый раз после отключения питания от аккумулятора. На старых типах СУД так оно и было, и в “Руководстве по эксплуатации” существовало строгое предупреждение о недопустимости отключения. Для устранения этого недостатка в современных контроллерах СУД используют новый тип энергонезависимого ОЗУ, который для хранения информации вообще не требует никакого дополнительного источника питания.

— АЦП — аналогово-цифровой преобразователь. Однокристальная микроЭВМ не может работать с аналоговыми сигналами, поэтому в АЦП происходит дискретная выборка мгновенных значений непрерывного аналогового сигнала и преобразование их в цифровой код (обычно 8 или10 двоичных разрядов).

— Порты ввода/вывода. Служат для организации взаимодействия микроЭВМ с другими компонентами контроллера. Через них происходит считывание входных и выдача выходных сигналов и информации.

— Таймеры/счетчики — это устройства, необходимые для измерения интервалов времени или подсчета числа событий.

— Генератор тактовой частоты. Вырабатывает тактовые импульсы синхронизации работы всей системы. От точности его работы зависит точность измерения всех интервалов времени.