Смекни!
smekni.com

Принципы биомеханики спорта (стр. 3 из 6)

1. Собственно-силовые Статический режим и медленные (статическая сила) движения

2. Скоростно-силовые:

а) динамическая сила Быстрые движения

б) амортизационная сила Уступающие движения

Сила действия человека и сила мышц

Сила действия человека непосредственно зависит от сил тяги мышц, т.е. сил, с которыми отдельные мышцы тянут за костные рычаги. Однако между натяжением той или иной мышцы и силой действия нет однозначного соответствия. Это объясняется, во-первых, тем, что почти любое движение происходит в результате сокращения большого числа мышечных групп; сила действия – итог их совместной активности; и, во-вторых, тем, что при изменении суставных углов меняются условия тяги мышц за кость, в частности плечи сил мышечной тяги

11. Биомеханическая характеристика скоростных качеств

Скоростные качества характеризуются способностью человека совершать двигательные действия в минимальный для данных условий отрезок времени. При этом предполагается, что выполнение задания длится небольшое время и утомление не возникает.

Принято выделять три основные (элементарные) разновидности проявления скоростных качеств:

1) скорость одиночного движения (при малом внешнем сопротивлении);

2) частоту движений;

3) латентное время реакции.

Между показателями скорости одиночного движения, частоты движений и латентного времени реакции у разных людей корреляция очень мала. Например, можно отличаться очень быстрой реакцией и быть относительно медленным в движениях и наоборот. Имея это в виду, говорят, что элементарные разновидности скоростных качеств относительно независимы друг от друга.

В практике приходится обычно встречаться с комплексным проявлением скоростных качеств. Так, в спринтерском беге результат зависит от времени реакции на старте, скорости отдельных движений (отталкивания, сведения бедер в безопорной фазе) и частоты шагов. Скорость, достигаемая в целостном сложнокоординированном движении, зависит не только от скоростных качеств спортсмена, но и от других причин (например, скорость бега – от длины шагов, а та, в свою очередь, от длины ног, силы и техники отталкивания), поэтому она лишь косвенно характеризует скоростные качества, и при детальном анализе именно элементарные формы проявления скоростных качеств оказываются наиболее показательными.

12. Биомеханическая характеристика выносливости

Выносливостью называется способность противостоять утомлению. При прочих равных условиях у более выносливых людей наступает позже как первая, так и вторая фаза утомления. Основным мерилом выносливости считают время, в течение которого человек способен поддерживать заданную интенсивность двигательного задания. Согласно правилу обратимости двигательных заданий, для измерения выносливости можно использовать и другие эргометрические показатели. Рассмотрим пример: спортсмены лежа выжимают «до отказа» штангу 50 кг. Если не учитывать уровень их максимальной (F mm) силы, то более выносливыми следует считать тех, кто смог поднять штангу большее число раз. Если же учесть, что максимальная сила у одних спортсменов невелика (скажем, 55 кг), а у других намного больше, то ясно, что на полученный результат повлияет не только разный уровень выносливости испытуемых, но и разные силовые возможности. Устранить их влияние можно было бы, например, так: предложить всем выжимать штангу, вес которой равен определенному проценту от их максимальной силы (скажем, 50% от F mm). В первом случае интенсивность задания уравнивалась в абсолютных единицах (килограммах), во втором – в относительных (в% от R m).

Примерами латентных показателей выносливости могут быть:

1. Коэффициент выносливости – отношение времени преодоления всей дистанции ко времени преодоления какого-либо короткого отрезка (100 м в беге, 50 м в плавании и т.п.): KB = t д, где t эт – время на дистанции (например, 400 м за 48,0 с), t 3 T – лучшее время на коротком («эталонной») отрезке (100 м – 11,0 с). KB = 48,0:11,0 = 4,3636.

2. Запас скорости (по Н.Г. Озолину) – разность между средним временем преодоления эталонного отрезка при прохождении всей дистанции и лучшим временем на этом отрезке. Запас скорости (3 C)= t д: n – t 3 r, где и – число, показывающее, во сколько раз эталонный отрезок меньше всей дистанции (400 м: 100 м = 4). Запас скорости =48,0:4–11,0 = 1 с.

Чем меньше запас скорости, тем выше выносливость. С ростом спортивной квалификации запас скорости, как правило, уменьшается. Например, у сильнейших бегунов мира на 400 м он равен 0,9–1,0 с, у начинающих – 2–2,5 с. С увеличением дистанции запас скорости также увеличивается.

Тренеры в видах спорта циклического характера должны знать, чему равны показатели запаса скорости (или другие латентные показатели выносливости) на разных дистанциях у спортсменов разной квалификации, это поможет определять слабые стороны в подготовке своих учеников, видеть, что именно отстает – скорость или выносливость.

13. Биомеханическая характеристика гибкости

Гибкостью называется способность выполнять движения с большой амплитудой. Слово «гибкость» используется обычно как более общий термин. Применительно к отдельным суставам говорят о подвижности в них. Для точного измерения гибкости (подвижности в суставах) надо измерить угол в соответствующем сочленении в крайнем возможном положении между сочленяющимися звеньями. Измерение углов движений в суставах, как известно, называется гониометрией (от греч. «гони» – угол и «метр» – мера). Поэтому говорят, что для измерения гибкости используются гиниометрические показатели. Наиболее детальный способ измерения гибкости – так называемый глобографический. При этом поверхность, очерчиваемая в пространстве дистальной точкой движущейся кости, рассматривается как «глобус», на котором определяют предельные значения «меридианов» и «параллелей». В спортивной практике для измерения гибкости нередко используют не угловые, а линейные меры (рис. 60, В). В этом случае на результате измерения могут сказаться размеры тела, например длина рук (при наклоне вперед или выполнении выкрута с палкой), длина туловища (при измерении расстояния между руками и ногами во время выполнения гимнастического моста). Поэтому линейные меры менее точны, и, применяя их, следует вводить поправки, устраняющие нежелательное влияние размеров тела.

Выделяют активную и пассивную гибкость. Активная гибкость – способность выполнять движения в каком-либо суставе с большой амплитудой за счет активности мышечных групп, проходящих через этот сустав (пример: амплитуда подъема ноги в равновесии «ласточка»). Пассивная гибкость определяется наивысшей амплитудой, которую можно достичь за счет внешних сил. Показатели пассивной гибкости больше соответствующих показателей активной гибкости. Разница между ними называется дефицитом активной гибкости. Он определяется зависимостью «длина – сила тяги» активной мышцы, в частности величиной сипы тяги, которую может проявить мышца при своем наибольшем укорочении. Если эта сила недостаточна для дальнейшего перемещения сочленяющихся звеньев тела, то говорят об активной недостаточности мышцы. Экспериментально показано, что активная недостаточность может быть уменьшена (соответственно уменьшен дефицит активной гибкости и повышена сама активная гибкость) за счет силовых упражнений, выполняемых с большой амплитудой движения. Рост силовых качеств приводит в этом случае к увеличению показателей активной гибкости.

Гибкость зависит от ряда условий: температуры окружающей среды (повышение температуры приводит к повышению гибкости), времени суток (в середине дня она выше), разминки и др.

В спорте не следует добиваться предельного развития гибкости. Ее надо развивать лишь до такой степени, которая обеспечивает беспрепятственное выполнение необходимых движений. При этом величина гибкости должна несколько превосходить ту максимальную амплитуду, с которой выполняется движение («запас гибкости»).

14. Связь биомеханики с другими науками

Биомеханика как одна из биологических наук нового типа начинает сближаться по методам исследования с точными науками. Общая биомеханика как раздел биофизики, включающая изучение внутриорганизменных биосистем, возникла на стыке физико-математических и биологических областей знания. Успехи этих наук, использование идей и подходов кибернетики, а также научно-технический прогресс так или иначе сказываются на развитии биомеханики. В свою очередь, эти науки обогащаются данными биомеханики о физике живого. В биомеханических исследованиях применяются методы этих смежных наук; в то же время в исследованиях их проблем могут применяться биомеханические методы. Здесь налицо двусторонняя связь, обеспечивающая взаимное обогащение теории и методов исследования.

Несколько иначе связана биомеханика с отраслями знания, в которых изучаются конкретные области прикладной двигательной деятельности. Так, развивающаяся инженерная биомеханика смыкается с бионикой, инженерной психологией («человек и машина»), связана с разработкой роботов, манипуляторов и других технических устройств, умножающих возможности человека в труде. Медицинская биомеханика дает обоснование ряду методов протезирования, протезостроения, травматологии, ортопедии, лечебной физической культуры. В космической медицине решаются задачи подготовки космонавтов, обеспечения их работоспособности в условиях невесомости, а также двигательных действий в космосе. Биомеханика как бы обслуживает эти области деятельности в процессе решения их прикладных задач.

Методы и законы биомеханики спорта используются также для совершенствования теории и методики физического воспитания, врачебного контроля, спортивно-педагогических и других дисциплин, решающих свои конкретные задачи в области физического воспитания.

15. Сила и момент силы

Сила – это мера механического действия одного тела на другое Численно она определяется произведением массы тела на его ускорение, вызванное данной силой: