Смекни!
smekni.com

Сущность квантово-механической концепции описания микромира (стр. 3 из 4)

Для классической механики и теории относительности характерно описание частиц путем задания их положения в пространстве координат и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В таких случаях используют законы квантовой механики.

Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. Мы будем рассматривать в основном сущность нерелятивистской квантовой механики - вполне законченной и логически непротиворечивой теории, которая позволяет количественно решать в принципе любую физическую задачу в области своей компетентности. Разработка релятивистской квантовой механики еще не доведена до такого уровня. Например, если в нерелятивистской области можно считать, что движение определяется силами, действующими мгновенно на расстоянии, то в релятивистской области это допущение несправедливо. Поскольку, согласно теории относительности, взаимодействие передается с конечной скоростью, должен существовать физический агент, переносящий взаимодействие. Таким агентом считается физическое поле. Поэтому можно сказать, что труд-

ности создания релятивистской теории по существу связаны с построением теории поля.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка (или кванта действия). Если в условиях конкретной задачи физическая величина, имеющая размерность действия, значительно больше постоянной Планка, то применима классическая механика или теория относительности. Формально это условие и является критерием выбора физической теории для описания картины мира.

История становления квантовой теории

Разработка квантовой механики относится к началу XX в., когда были обнаружены две, казалось бы, не связанные между собой группы явлений (установление на опыте двойственной природы света - дуализма света и невозможность объяснить на основе имевшихся представлений существование устойчивых атомов и их оптические спектры), свидетельствующих о неприменимости механики Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели к открытию законов квантовой механики.

Впервые представления о кванте ввел в 1900 г. М. Планк в работе, посвященной теории теплового излучения тел. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, а именно тепловое равновесие между излучением и веществом не может быть достигнуто, так как вся энергия должна перейти в излучение. Планк разрешил это противоречие, предположив, что свет испускается не непрерывно, как следует из классической теории излучения, а дискретными порциями энергии - квантами, причем величина кванта энергии зависит от частоты света.

Эта работа Планка стимулировала развитие квантовой механики в двух взаимосвязанных направлениях, завершившееся в 1927 г. окончательной формулировкой квантовой механики в двух ее формах. Первое направление связано с

именем А. Эйнштейна, который предложил теорию фотоэффекта (1905). Развивая идею Планка, А. Эйнштейн предположил, что свет квантами не только испускается и поглощается, но и распространяется, т.е. дискретность присуща самому свету: свет состоит из отдельных порций - световых квантов (фотонов).

В 1922 г. А. Комптон экспериментально показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Таким образом, было доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света - огибании светом различных препятствий) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо считать, что свет имеет волновую природу, а объяснение других предполагало его корпускулярную природу.

В 1924 г. Л. де Бройль, пытаясь найти объяснение постулированным в 1913 г. Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице независимо от ее природы следует поставить в соответствие волну, длина которой связана с импульсом частицы, при этом не только фотоны, но и все <обыкновенные частицы> (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в дифракции частиц. В 1927 г. К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов.

В 1926 г. Э. Шрёдингер предложил уравнение, описывающее поведение таких <волн> во внешних силовых полях, - возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. В 1928 г. П. Дирак сформулировал релятивистское уравнение, которое описывает движение электрона во внешнем силовом поле и стало одним из основных уравнений релятивистской квантовой механики.

Второе направление развития (также являющееся обобщением гипотезы Планка) начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых

тел. Дело в том, что электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (физических систем, совершающих колебания), а испускание или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что испускание и поглощение электромагнитного излучения веществом происходят квантами с энергией fiv (h - постоянная Планка, v - частота света), можно объяснить так: осциллятор поля не может обладать произвольной энергией, он может иметь только дискретные уровни энергии, разность между которыми равна fiv. Эйнштейн, обобщая идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы, утверждал, что если тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов с квантованной энергией, т.е. разность соседних уровней энергии равна tiv, где v - частота колебаний атомов. Теория Эйнштейна, уточненная П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твердых тел.

В 1913 г. Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе представлений классической электродинамики приводило к парадоксальному результату - невозможности существования стабильных атомов. Дело в том, что, согласно этим представлениям, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию, а радиус его орбиты должен непрерывно уменьшаться, и через время 10~8 с электрон должен упасть на ядро. Однако атомы не только существуют, но и весьма устойчивы.

Объясняя устойчивость атомов, Бор предположил, что из всех орбит, допускаемых классической механикой для движения электрона в электрическом поле атомного ядра, реально

осуществляются лишь те, которые удовлетворяют определенным условиям квантования, а именно величина действия для классической орбиты должна быть кратной постоянной Планка. Бор постулировал, что электрон, совершая допускаемое условиями квантования орбит движение (т.е. находясь на определенном уровне энергии), не испускает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т.е. с одного уровня энергии на другой, с меньшей энергией; при этом рождается квант света. В результате этого возникает линейчатый спектр атома. Бор получил формулу для частот спектра, линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул. Существование уровней энергии в атомах было подтверждено опытами Франка - Герца (1913-1914).

Таким образом, Бор, используя квант, постоянную Планка, отражающую дуализм света, показал, что эта величина опре-, деляет также движение электронов в атоме. Этот факт позднее. был объяснен на основе универсальности корпускулярно-вол-' нового дуализма, в соответствии с которым понятия частицы и волны, с одной стороны, дополняют друг друга, а с другой -противоречат друг другу. Он связан также со способами изучения явлений микромира. Существуют два типа приборов: в одних квантовые объекты ведут себя как волны, в других - как частицы, поэтому экспериментально можно наблюдать квантовые явления, на которые налагается взаимодействие приборов с микрообъектом, а не реальность как таковую.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счет нарушения логической цельности теории: одновременно использовались классическая механика и чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение связи между атомами, приводящей к образованию молекулы, не могла ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой, и т.п.