Смекни!
smekni.com

Форма, размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли (стр. 7 из 8)

В результате вращения узлов лунной орбиты с периодом Т0 = = 18,613 года образуется дополнительная волна прилива, амплитуда которой сравнима с амплитудой месячного прилива. Сложение ее с главной волной зонального прилива приводит к настолько сильному перераспределению масс в теле Земли и перисфере, что это находит выражение в периодичности землетрясений и вулканизма Тихоокеанского подвижного пояса. В частности, прогноз 19-летних циклов составляет до 94 % для сильных землетрясений с магнитудой М ³ 7 и глубиной очагов 0 – 600 км, а также для мощного вулканизма.Кроме перечисленных волн имеются аналогичные им солнечные приливные волны несколько меньшей амплитуды, которые, складываясь с лунными, усиливают их.

Гармонический анализ только месячной серии приливных наблюдений позволяет выделить еще целый ряд волн. В частности, по разложению Дудсона получается 115 секториальных полусуточных, 158 тессеральных суточных, 99 зональных долгопериодных и 14 секториальных третьесуточных волн. Взаимодействие всех этих фаз приводит к сложнейшим взаимным перемещениям возмущающих масс вещества в теле Земли и на поверхности.

Физические основы гравитационных аномалий.

Аномальное гравитационное поле отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Поэтому для однозначного решения вопроса о природе аномалий необходимо уметь разделять гравитационные поля на региональные, создаваемые глубоко залегающими массами, и локальные, вызванные местными геологическими неоднородностями разреза. В частности, для исключения высокочастотного локального фона пользуются различными методами пересчета аномального поля в верхнее полупространство, т.е. наблюдатель как бы удаляется от объекта возмущений. В результате таких операций мелкие неоднородности поля сглаживаются и остается низкочастотный региональный фон, обусловленный действием глубоко залегающих гравитирующих масс.

Другая задача интерпретации заключается в исключении регионального фона и выделения локальных аномалий, связанных с неглубоко залегающими массами. Методы решения этих задач разработаны довольно обстоятельно и в целом носят полуколичественный характер.

Несмотря на сложную структуру аномального гравиметрического поля, наблюдаемого как на суше, так и на море, отдельные участки кривой Dg могут быть использованы для определения параметров гравитирующей массы. Иногда, меняя форму и глубину залегания гравитирующей массы, рассчитывают создаваемую при этом аномалию. Сравнивая ее с наблюденной аномалией, методом подбора определяют основные параметры возмущающей массы в реальных условиях.

Нахождение гравитационного поля по известной форме, плотности и глубине залегания гравитирующей массы называется прямой задачей гравиразведки.

Нахождение параметров гравитирующей массы по характеру аномалии называется обратной задачей гравиразведки.

На практике чаще всего приходится решать обратную задачу. При этом наиболее удовлетворительное приближение удается достигнуть для тел простой геометрической формы.

Существование гравитационных аномалий в земной коре, под дном океана, равно как и на суше, обусловлено плотностными неоднородностями горных пород. Чем значительнее эти неоднородности, тем лучше они отражаются в аномальном гравитационном поле. Большое значение имеют также размеры и форма аномалиеобразующего тела.

Для оценки параметров геологических объектов и расчетов создаваемого ими аномального поля силы тяжести вводится, как уже говорилось, понятие избыточной плотности горных пород:

.

Избыточной плотностью называется разность плотности вмещающих пород r1 и плотности аномалиеобразующего тела r2. Знание плотности важно при геологическом истолковании гравитационных аномалий.

Сведения о плотностях горных пород получают различными способами: непосредственными измерениями в скважинах или по образцам, или косвенным путем по данным о сейсмических скоростях распространения волн в толщах пород, или аналитически по наблюденным гравитационным аномалиям.

Плотность горной породы определяется как отношение массы вещества m к ее объему V:

Она зависит от минералогического состава, пористости и влажности породы. Чем больше пористость, тем меньше плотность, и наоборот. Если поры заполнены водой, то плотность такой породы повышается. Различные геологические процессы оказывают существенное влияние на плотность пород. Например, в зонах тектонических разломов в результате дробления пород и замещения их более легкими породами может происходить разуплотнение первоначально более плотного субстрата. В случае внедрения интрузий основного или ультраосновного состава происходит замещение менее плотных пород более плотными. Увеличение плотности пород наблюдается в сводах антиклинальных складок в результате сжатия пород.В целом плотность осадочных пород меньше, чем плотность магматических и метаморфических пород, и возрастает с увеличением основности пород. Ниже приведены плотности наиболее распространенных пород.

Плотности наиболее распространенных пород.

Порода

Средняя плотность, г/см3

Глинистые сланцы Метаморфические

2,3

Серпентиниты

2,6

Граниты Кислые

2,7

Диабазы, габбро Основные

2,9

Базальты

3,0

Дуниты Ультраосновные

3,2

Глины

2,0

Песчаники Осадочные

2,3

Известняки

2,5

Морская вода

1,03

В реальных средах наблюдаются довольно значительные отклонения плотности от указанных средних значений в ту или иную сторону.

Сопоставление плотности с другими физическими свойствами гор­ных пород обнаруживает в ряде случаев определенные статистические связи. Так, отмечается параболическая зависимость скорости распространения продольных сейсмических волн от плотности. С увеличением скорости плотность закономерно возрастает. Это позволяет проводить оценку плотностных характеристик геологического разреза по материалам сейсмических исследований. Выше приводились данные об увеличении плотности пород по мере повышения их основности. В этом же направлении происходит и увеличение магнитной восприимчивости пород, хотя более определенной статистической закономерности здесь определить не удается.

Плотность горных пород дна океана в большинстве случаев удается определить на образцах, драгированных лишь с поверхности дна. Начавшееся в 1969 г. глубоководное бурение с «Гломар Челленджер» позволило проводить непосредственные определения плотности осадочных и базальтовых пород на глубину до 1 км под поверхность дна океана.

Измерения плотности на образцах производятся либо путем гидростатического взвешивания, либо с помощью специального прибора – денситометра. В первом случае значение плотности непористых образцов определяется по формуле : ,

где P1 и P2 – вес образца соответственно в воздухе и в воде. При измерениях на денситометре значение плотности r отсчитывается по шкале прибора, отградуированной в г/см3.Чем детальнее нам нужно знать гравитационное поле, тем большее число параметров определяют аналитическое выражение для силовой функции поля тяготения планеты. В эпоху, когда спутники еще были недоступны,основным методом исследования гравитационного поля был гравиметрический. Гравиметрия -- область геофизики, изучающая способы наиболее высокоточного определения удельной силы тяжести и ее геологической интерпретации. Этой наукой занимаются как физики, механики так и геологи. До 20-х годов ХХ столетия наука не располагала средствами для измерения удельной силы тяжести на морях и океанах с точностью достаточной, для ее геологического истолкования. В 1922-1929 гг голландский ученый-геодезист Венинг-Мейнес разработал способ наблюдения колебаний маятников на слабо качающемся основании. Используя подводную лодку в качестве лаборатории, он совершил ряд плаваний в Юго-Восточную Азию, исследовал регион, содержащий островные дуги и глубоководные впадины. Идеи Венинг-Мейнеса были реализованы в Государственном астрономическом институте им. П.К. Штернберга профессором Л.В.Сорокиным. До Великой Отечественной войны Л.В,Сорокин с учениками совершил ряд плаваний на подводных лодках на Черном море, в Баренцовом, Охотском и Беринговом морях. Только война остановила эти исследования. Однако, после войны они вновь активизировались. Были разработаны и другие методы для измерения силы тяжести на обычных исследовательских судах, были изобретены морские гравиметры, способные измерять приращение силы тяжести с относительной точностью не хуже

. В морских гравиметрических исследованиях после войны принимали активное участие и другие страны, в частности США, Англия, Германия, Франция, Италия и Япония. Они и сейчас продолжают активное исследование гравитационных полей акваторий, в особенности нефтегазоносных акваторий. Накопился достаточно большой материал для определения модели гравитационного поля Земли как планеты. По мере накопления новых данных производилась ревизия этих моделей. Одна из последних моделей гравитационного поля по геофизическим данным была построена в ГАИШ профессором Н.П. Грушинским. Настоящую революцию в определении гравитационного поля планеты произвели первые запуски искусственных спутников Земли. Был отмечен резкий скачек в точности определения постоянной
-- постоянной, ответственной за сжатие планеты -- одним из основных параметров, необходимых для развертывания карт на Земной поверхности. Сейчас разработаны новые методы наблюдения ИСЗ, которые позволяют определить положение спутника с точностью
2 см. Возникло новое направление небесной механики, позволяющее по видимым неравенствам в движении спутника определять возмущающие силы – гравитационное поле планеты. Как известно обратные задачи динамики относятся к типу некорректных, теорию которых разработали ученые МГУ и успешно используются для решения задач как геофизики, так и астрофизики. Сейчас построено достаточно много моделей гравитационного поля Земли разной детальности и точности. Отмечено, что с увеличением степени и порядка разложения падает точность определения коэффициентов. Для описания регионального поля часто прибегают к модели степени и порядка 36 (36х36). Наиболее детальная из известных моделей, по-видимому, модель, получившая шифр EGM-96 (360х360).