регистрация / вход

Антропогенная динамика ландшафта

Характеристика сущности динамики и видов устойчивости: инерционная, резистентная (упругая), адаптивная или приспособления (толерантности, терпимости, пластичности). Сукцессия ландшафта. История и направления антропогенизации ландшафтной сферы Земли.

Реферат по предмету: Ландшафтоведение.

Тема: «Антропогенная динамика ландшафта. Устойчивость ландшафта».

Содержание

1. Понятие динамики и устойчивости

2. Сукцессия ландшафта

3. История и направления антропогенизации ландшафтной сферы Земли

Список использованных источников.


1. Понятие динамики и устойчивости

Под состоянием природной геосистемы обычно понимают определенный тип ее структуры и функционирования, ограниченный некоторым отрезком времени. Отсюда логически следует, что динамика природной геосистемы это смена ее состояний. Ясно, что антропогенная динамика геосистем обусловлена хозяйственной (в широком понимании - антропогенной) нагрузкой на нее: ускоренной эрозией и дефляцией почв, вторичным засолением почв на орошаемых участках в аридных регионах, дигрессией пастбищ, вырубкой лесов, заболачиванием и подтоплением побережий водохранилищ, опустыниванием, евтрофикацией (загрязнением) природной среды.

В целом динамика природных режимов и восстановительных сукцессии - это виды стабилизирующей динамики ландшафта, остальные виды динамики ведут лишь к необратимому качественному изменению или даже разрушению ландшафта. Под устойчивостью ландшафта понимается его способность сохранять свою структуру и функционирование в режиме нормальных природных ритмов и в обстановке изменяющейся внешней среды или под воздействием антропогенных нагрузок.

Устойчивость ландшафтной сферы, как и в целом геосистемы, подчиняется принципу относительности, в частности:

1)к одним нагрузкам ландшафты устойчивы, к другим нет;

2)разным геосистемам (ландшафтам в том числе) свойственны разные потенциалы устойчивости к одним и тем же воздействиям. Характерный пример этого: верхние звенья степной катены лучше переносят загрязнения, чем нижние, а нижние лучше верхних переносят эрозию.

Установлено также, что относительно малая устойчивость к возмущающим внешним воздействиям характерна для многих реликтовых геосистем (например, для лесных массивов в степях). Такие реликты находятся в известной дисгармонии с окружающей их внешней средой. Неустойчивы и геосистемы на ранних стадиях своего формирования, например, только начинающие зарастать пески. В сравнении с такими системами намного более устойчивы климаксовые геосистемы.

Устойчивость ландшафтов во многом зависит от того, какой вид динамики у них преобладает. В частности, если господствует стабилизирующая динамика, устойчивость значительно повышается. Однако она сильно падает в тех случаях, когда динамический тренд (направление нагрузок) усугубляется наложением однонаправленных антропогенных нагрузок.

В этих случаях и происходит так называемый ландшафтный резонанс - явление усиления внутренних колебаний геосистемы внешними колебаниями. Весьма известный пример здесь - опустынивание Сахели (области на севере Африки), которое из-за засухи усилилось также многолетним перевыпасом скота.

Различаются три основных механизма ландшафтной устойчивости.

1.Устойчивость инерционная - это такой механизм устойчивости, когда отсутствуют реакции на нагрузки до каких-то определенных пороговых значений. Такой устойчивостью обладают преимущественно ландшафты в срединных частях природных зон, так называемые квазистационарные ландшафты.

2.Устойчивость резистентная (упругая). Она свойственна главным образом системам с мощным растительным покровом, потому что именно растительный покров прежде всего обеспечивает восстановительную сукцессию геосистемы.

3.Устойчивость адаптивная, или устойчивость приспособления (толерантности, терпимости, пластичности). Сущность этого механизма устойчивости в том, что геосистемы (и, следовательно, ландшафты) способны чутко приспосабливаться и к меняющимся условиям внешней среды, и к антропогенным нагрузкам, но в определенных рамках терпимости (толерантности).

Адаптивная, т. е. пластичная, устойчивость определяется широтой диапазона между максимальным и минимальным значением факторов, в пределах которого ландшафт способен сохранять характерные для него структурные и функциональные особенности. Это положение соотносится с известным законом толерантности В. Шелфорда.

Отметим также, что чем менее разнообразна горизонтальная структура ландшафта, тем более слабы ее механизмы компенсации и, следовательно, тем слабее ее устойчивость. Очевидно и то, что локальные антропогенные нагрузки чаще всего не сказываются или почти не сказываются на крупных региональных иерархических единицах: провинциях, зонах и т.п.

2. Сукцессия ландшафта

Сукцессия ландшафта (от лат. successio - преемственность, наследование) - термин первоначально был применен в геоботанике для обозначения смены временных, нестабильных растительных сообществ при формировании или разрушении устойчивого фитоценоза. Причины - как саморазвитие биогеоценозов, так и внешние природные и антропогенные факторы (рубки, пожары, вытаптывание и др.).

Представление о сукцессиях было внесено К. Троллем в сферу ландшафтоведения для обозначения последовательных смен состояний в рамках одного инварианта. Это нашло свое выражение при анализе динамической модели эпифации - серийных рядов фаций, последовательно связанных с коренной фацией. Это одна из пространственных форм отражения именно сукцессии ландшафта. Под сукцессией ландшафта можно понимать также и процесс смены его переменных состояний в направлении к коренному или близкого к нему динамическому состоянию.

Мы уже достаточно знаем о том, что под воздействием климатического и геолого-геоморфологического факторов внешней среды происходит эволюция природных геосистем. Помимо факторов внешней среды не менее важным для эволюции природных геосистем является фактор саморазвития, или фактор спонтанного развития. Любая сложная система, в том числе и геосистема, какой бы открытой по отношению к внешней среде она ни была, обладает способностью к саморазвитию, обладает спонтанностью. Примеры: развитие ландшафтной оболочки, зарастание пресного водоема. Направленность саморазвития геосистем, историческая неповторимость их природы - чрезвычайно важное свойство геосистем. В ходе спонтанного развития природная геосистема проходит ряд последовательных стадий. Самые важные из них:

1) зарождение геосистемы. Обычно происходит возникновение новой литогенной основы;

2) становление геосистемы. Появляются почва и растительный покров, в первую очередь, - пионерные группировки однолетних экс-плерентных растений (сорняки, «шакалы» растительного мира). Они готовят экотоп для более требовательных многолетних растений;

3) зрелость геосистемы. Появляются многолетние растения. Они образуют устойчивые фитоценозы. Система находится в состоянии максимального равновесия, или климакса (термин введен Клеменсом). Примеры климаксовых систем: смешанные леса на моренной равнине, суглинках с дерновыми почвами, богато разнотравные степи на черноземах;

4) отмирание геосистемы. При этом на ее месте зарождается новая геосистема. Например, на месте озера появляется низинное болото, на месте низинного болота - верховое, на месте верхового болота - лес.

Последовательная закономерная смена стадий в процессе зарождения и формирования природной геосистемы и называется сукцессией ландшафта.

Если геосистема нарушена чем-то и стремится к равновесию, то в этом случае говорят о восстановительной сукцессии.

3. История и направления антропогенизации ландшафтной сферы Земли

Многолетние исследования современных ландшафтов привели к выводу, что природно-антропогенные ландшафты - это исторические образования. Многие из них пережили и продолжают переживать ныне длительную эволюцию, причем не только природную, но и хозяйственную. В их структуре сосредоточены элементы былых эпох хозяйственного использования. Можно наметить основные этапы эволюции ландшафтной оболочки Земли.

1. Добиосферный (абитический) - весь криптозой.

2. Биосферный этап - фанерозой. Он характеризуется развитием биоты, трансформацией атмосферного воздуха под ее воздействием, а также всех природных вод, литогенной основы ландшафтов.

3. Формирование почвенного покрова. В самом конце биосферного этапа устанавливается появление человека умелого.

4. Антропогенный этап начался 40 тысяч лет назад, с появлением Ноmо sapiens (человека разумного). Он стал активно пользоваться огнем, орудиями труда, заниматься охотой. При этом сильно сократилось количество многих млекопитающих, что в итоге привело к наступлению экологического кризиса мезолита. Выходом из этого кризиса был переход от присваивающего способа потребления к производящему, что в ранней истории человечества обозначается как неолитическая революция. Зародилось земледелие и животноводство.

5. Техносферный этап датируется серединой XIX - концом XX столетия. В начале XXI века отчетливо обозначен переход к постиндустриальному обществу.

6. Ноосферный этап лишь начинается. Ноосфера, в понимании В.И. Вернадского, - это такое возможное в будущем состояние ландшафтной сферы, когда ее функционирование и развитие целенаправленно регулируется Разумом человечества для сохранения человеческой цивилизации. Концепция устойчивого развития была рассмотрена и принята на одном из последних географических конгрессов в Рио-де-Жанейро в 1992 г. Суть концепции - в разумном сотворчестве человека и природы с целью создания системы культурных ландшафтов как структурных важнейших элементов ноосферы. Путем построения ноосферы, таким образом, и является упомянутая концепция устойчивого развитии. В постиндустриальном мировом сообществе приоритеты должны быть отданы уже не технике, а экологии, в том числе ландшафтной.

Антропогенизация ландшафтной сферы Земли происходит не только в результате целенаправленной хозяйственной деятельности, но и в результате возможных, дестабилизирующих природную среду процессов - так называемых цепных реакций.

Перечислим виды антропогенного воздействия, рассматриваемые ныне в качестве основных практически для всей земной суши:

-ускоренная эрозия почв и антропогенная денудация;

-обеслесение суши;

-антропогенное опустынивание;

-антропогенная евтрофикация (загрязнение) природной среды;

-урбанизация Земли;

-создание парникового эффекта;

-металлизация ландшафтной сферы;

-нарушение естественных биохимических круговоротов веществ и энергии в природно-антропогенных ландшафтах;

-антропогенное изменение информативности ландшафтов вследствие их унификации.

Рассмотрим подробнее один из видов антропогенного воздействия - механизм и масштабность металлизации ландшафтной сферы. В качестве примера использованы данные о трансформации вод в промышленном ландшафте - характерный пример нарушения биогеохимических круговоротов веществ и энергии в природно-антропогенных ландшафтах.

А.И. Перельман один из первых обосновал понятие о горнопромышленных ландшафтах, полностью увязав их образование, в рамках исторической геохимии ландшафтов, с техногенезом. Если, по его данным (1975, 1989), проследить этапы исторической геохимии, то техногенез, несомненно, - самый молодой по времени возникновения. И хотя, по некоторым сведениям, начало эпохи техногенеза отстоит от наших дней на 8000 лет, его очевидное, притом глобальное развитие особенно активно и мощно проявлено ныне.

Современный горнопромышленный Урал может считаться эталонной областью образования и развития горнопромышленных ландшафтов, с продолжительностью их формирования примерно 300 лет;

наиболее активно в последние 70 - 80 лет - советская и постсоветская эпохи. В горнопромышленных ландшафтах прежде всего ощутимы изменения гидрогеологического режима (особенно в областях многолетнего водоотлива и формирования депрессионных зон при разработке и осушении месторождений, в большинстве случаев уже достигших границ соответствующих областей фильтрации), во многих случаях произошло заболачивание, изменились условия водоснабжения в связи со сменой уровней подземных вод и т.д.

Естественно, что глубокая трансформация оказалась неизбежной для геохимической и гидрогеохимической обстановки, притом, что последняя является особенно чутким, контрастным и достоверным индикатором таких изменений. На Урале, гумидной области с полноводными реками и множеством озер, есть много примеров сильного угнетения и даже полного уничтожения растительности в районах действующих или уже прекративших хозяйственное функционирование рудников, шахт, разрезов, металлургических предприятий. В ряде случаев сформировались характерные для этих условий сернокислые горнопромышленные техногенные ландшафты, на многих участках которых уже выявлены своеобразные техногенные залежи минерального сырья, в том числе и такие, которые можно отнести и к категории техногенных гидроминеральных ресурсов.

Наиболее типичными чертами гидрогеохимии этих ландшафтов, сформировавшимися в преимущественно сернокислых условиях, являются: сильнокислые (рН 1,7-3) рудничные воды (до 98 - 99 эквивалентных % SO4 2- ), свободная серная кислота, малая, почти незаметная концентрация Сl (в целом малохлоридные системы), высокие содержания Fе3+ как главной среди форм Fе и продуктов его окисления, высокие концентрации Zn, Си, А1, Мn, Со, Сd и заметные, часто высокие концентрации (до 0,01; 0,1 и даже и мг/дм3 ) ультрамалых (Hf и W и др.) и редкоземельных (La, Ce, Nd, Sm, Eu, Gd, Ho, Tm, Yb и др.) элементов, формирование многих систем с Н2 S (табл. 1).

Конкретная картина необратимой гидрогеохимической трансформации горнопромышленных ландшафтов наиболее ощутима в пределах сернокислых полей при длительной разработке медноколчеданных залежей, отчасти в ландшафтах также глубоко трансформированных и длительно отрабатывавшихся (ныне уже не эксплуатируемых) сильносульфидизированных угольных полей (Кизеловский бассейн).

Таблица 1. Ассоциации элементов в водах горнопромышленных ландшафтов меднорудных месторождений

Накопление

элементов

Водосбросы месторождений
Учалинского Ганского Дегтярского Ломовского Лёвихи Красногвардейского
> 100 000

Zn, Сu,

Cd

Си,Zn,

Сd, Со

- - - Сu
100 000-10 000

Fе, Zn

Cо, Мn

Со, Sс,

Zn, Cd

Сu, Zn Сu Сu, Zn Сu
10 000-1 000

Мn, Со,

Рb. Sb

Мn, Ni,

Y

Fе, Zn

Сu, Zn,

Cd, Yb

Сu, Zn,

Cd, Fe

Сu, Zn, Fе,

Со, As

1 000-100 Рb, Ni Рb, Rb

Ni, Со,

Fe, Mn,

Al, Pb,

Y, Yb

Ni, Co,

Al, Pb,

Zn, Sn,

Yb

Zn, Cd,

Mn, Fe

100- 10 Li, As Rb Сu

Pb, As,

Ti

Mn, Sc,

Yb

Pb, Ni, As,

Rb

10-1 - Sb, Li Fe, Cu Sn

Pb, Al,

As

Al, Sr, Ti,

As, Li

Sr, Cs

As, Sr,

Cs

Sr, Li,

Rb, Cs

Sr, Li,

Rb, Cs

Сs

Менее подверженными гидрогеохимической трансформации оказались воды железорудных месторождений Урала, хотя время их трансформации соизмеримо, а во многом и превышает таковое при промышленном освоении меднорудных объектов (табл. 2). Общие черты их гидрогеохимии: в целом cлабоминерализованные (от менее 0,5 - редко до 2-3 г/дм3 ), гидрокарбонатные кальциевые и/или магниево-кальциевые, нейтральные или слабокислые воды (7 < рН > 3).

Рассматривая возможность оценки степени техногенной мобилизации обширной металлоносной «нагрузки» рудничных и шахтных вод как основного результата их геохимического преобразования, мы различали прежде всего наиболее сильно измененные водосбросы залежей медноколчеданной группы (и их разливов в пределах близрасположенных от источников рассеяния частях ландшафтов), а также обширной группы месторождений минерального сырья, воды которых преобразованы техногенезом менее контрастно или почти не трансформированы. Это воды железорудных, никелевых, бокситовых и иных месторождений.

Таблица 2. Ассоциации элементов в водах горнопромышленных ландшафтов железорудных месторождений

Накопление

элементов Кн

Водосбросы месторождений
Естюнинского Валуевcкого Гороблагодатского Северо-Песчанского Первомайского Воронцовского
100- 10 -

Sr, МО,

Cs

Pb, Sr, F Рb Сu, Рb -
10- 1

Мл, V,

Cи, Co,

Sr, Ti, Ga

Zn, Си,

Mn

Mn, Cи,

Sr, As

Mn, Zn, V,

Cr, Sr, As

Mn, V, Cr,

Zn, As, Sr

Mn, Ni,

Cu, Zn, Sr

1-0,1 Zn, Ni

Fc, Zn,

Ni, Ti

Mn, Fe,

Zn, As

Mn, Ni, Mo

Ni, Ti,

Zn, Mo

Mn, Ti, Cr,

Zn, Sr

<0,1

Pb, Cd,

Rb, Li, Cs

Pb, Cd,

Li, Rb,

Cs,

Си, Cd,

Rb, Li, Cs

Zn, Cd, Li,

Rb, Cs

Мо, Cd,

Mg, Rb,

Li, Cs

Pb, Cd, Li,

Rb, Cs

Важен вопрос выбора исходных уровней сравнения концентраций элементов, так как «фоновый» уровень и содержания, и начальной трансформации установить ныне невозможно (за исключением тех чрезвычайно редких случаев, когда удалось сохранить данные о «естественном» составе вод и других компонентов среды). Для сравнения уровней накопления химических элементов нами использовались данные об их средних содержаниях в подземных водах зоны гипергенеза (Шварцев, 1978, 1998), в пресных речных, подземных и озёрных водах (Zуkа, 1972), концентрациях в морских водах (Хорн, 1972). Последнее обосновано и для тяжелых металлов (Cu, Zn, Fe, Mn, AL, Ni, Co, Cd), и для редких элементов (РЗ и др.) при невозможности обоснования «кларковых» концентраций в пресных водах. Это позволяет предложить коэффициент общего техногенного накопления Кн (что уже определяет «аномальность» самих концентраций) как отношение выявленных содержаний элементов Сi к принятому «эталону» или «кларковым» их содержаниям в водах (мг/дм3 или мкг/дм3 ).

В ландшафтах над меднорудными залежами перечень загрязнителей наиболее обширен, но и более однообразен, характерны и четкие ассоциации элементов. Уровни их накопления внутри ассоциаций иногда заметно варьируются, а вариации величин Кн наблюдаются и для элементов с максимальной (наиболее типоморфны в рассматриваемых антропогенных ландшафтах), и с более низкой интенсивностью накопления (Sr, Ai, Ti и др.). Изменения в концентрациях и уровнях накопления элементов характеризуют индивидуальные антропогенно-геохимические особенности рассматриваемых объектов и близко расположенных ландшафтов (табл. 3).

Таблица 3. Ассоциации элементов в ландшафтах горнообогатительных производств

Кн Хвосто-хранилище аглофабрики Шламо-накопитель Стоки обогащения Стоки серно-кислотного производства Сбросы цементационных установок
> 10 000 -

Fe, F, Cd,

As, Zn

- Аs Fe, Zn
10 000-1 000 -

Cu, Zn, Cd,

As

-

Cu, Zn, Pb, Cd,

Sb

Cu, Zn
1 000-100 -

Fe, Cu, Co,

Sb

Zn, Cu, Co Co, Ti -
100-10 Sr

Mn, Ni, Co,

V, Pb, Zn,

Sr, F

Mn. Ni, Co,

V, Ti, Sr

Mn, Ni, V,

Mo, Sr

Сu
10-1

Ni, V, Cu,

Mo, Sr

Cr, Li, Mo

Sr, Li, Mn,

Ti

- -
1-0,1 Mn, Zn, Ti - Li Li -
<0,1

Pb, Mn, Li,

Rb, Cs

Мо, Сs

Pb, Rb, Cs,

Mn, Zn, Ni

Rb, Cs

Показательны различия в градациях величин Кн для разных месторождений: на сернокислых ландшафтах меднорудных залежей 10бК н ≤0,1 (большей частью сульфидные воды), на ландшафтах железорудных залежей 10 ≤ Кн ≤ 0,1, для ассоциаций сточных вод вблизи горнообогатительных производств 104КИ ≤0,1. Следовательно, уже сам порядок градаций Кн определяет разную контрастность накопления элементов в разных ландшафтах и в известной мере уровень техногенной «нагрузки» на ландшафт (см. табл. 1, 2, 3).

Оценка уровней накопления элементов в сульфидных водах не полна без сравнения Кн с минерализацией растворов. Последняя достигает 110 г/дм3 и зависит преимущественно от SO4 2- а часто от содержаний Fe, He, Zn, Cи, Мn в ущерб Na, Са, Мg. Нами предложен коэффициент «удельного накопления» Км - характеристика дифференцированного накопления в зависимости от величины минерального остатка или минерализации раствора ( М, г/дм3 ), то есть отношения Кн к М (почти аналог известного коэффициента водной миграции; Перельман, 1947, 1975). По данным о величинах Км можно судить о накоплении элементов, дифференцированном в зависимости от минерализации вод и об интенсивности их водной миграции (табл. 4).

Таблица 4. Миграция элементов в водах горнопромышленных ландшафтов меднорудных залежей

Градации условного

накопления, Км

Элементы Интенсивность миграции
>105 Сu, Zn, ТR Чрезвычайно высокая
105 -104 Fe, Cu, Zn, Cd, TR Весьма высокая
104 - 103 Fe, Cu, Zn, Cd, Co, TR Высокая
103 -102 Fe, Al, Mn, Cu, Zn, Cd, Co, Ni, TR Средняя
102 - 10 Fe, Al, Mn, Cu, Zn, Ni, Co, Cd, TR Незначительная
10-1

Fe, Al, Mn, Cu, Zn, Ni, Co, Cd,

Sb, La, Ce

Малая
1-0,1

Fe, Al, Mn, Ni, Co, Sb, La, Mn,

La

Крайне малая
0,1-0,01 Fe, Mn, La Нижтожная

По этому показателю максимальная «нагрузка» выявляется на ландшафты у меднорудных объектов (приотвальные и обрушенные зоны, карьеры), на участки скопления промышленных стоков. Она меньше в ландшафтах у железорудных залежей. По величинам Км отмечается и некоторая специализация рассмотренных геохимических ландшафтов.

Максимальные Км для Ga, Cs, Sr, Fвыявлены в водах (и ландшафтах) железорудных, Fe, Zn, Cu, Al, Sn - для рудничных вод (и ландшафтов) меднорудных месторождений, а наивысшие накопления и самая интенсивная миграция Ni, Co. Mn, V, Sc, ряда РЗ наблюдались в приотвальных, карьерных и водах зон обрушения тех же месторождений. В них же весьма отчетливы спектры Pb, Mo, Cd, Ti, Sb. Можно, следовательно, отметить формирование явной геохимической специализации антропогенных горнопромышленных ландшафтов и контрастность многих элементов в их металлоносных ассоциациях.

Последний признак и является, видимо, показателем специфики объектов, а по положению элементов в ассоциации и уровням их накопления можно судить о мощности источника загрязнения и его длительности.

Градации накопления и миграции элементов (см. табл. 1 - 4) в известной мере условны. Однако они подчеркивают несомненно дифференцированную и контрастную (в данной среде - техногенную)аномальность практически всех гидрогеохимических ассоциаций и показывают уровень этой дифференцированности и контрастности. Химические элементы в данной специфичной среде имеют высокую технофильность и низкую биофильность, и в силу этого у них наблюдается высокая деструкционная активность. Это делает их опасными для живого вещества, в частности, в горнопромышленных ландшафтах.

Не все компоненты ландшафта испытывают на себе одинаково сильное преобразующее влияние человека. В культурном ландшафте остаются практически неизмененными геологический фундамент, тип рельефа, важнейшие черты климата. Человек пока еще не в состоянии изменить основные (зональные и азональные) условия развития ландшафта. Поэтому в случае прекращения вмешательства человека ландшафт стремится вернуться к своему первоначальному состоянию, но испытавший на себе воздействие человека, он не будет вполне обратимым. Степень обратимости или необратимости зависит от характера и интенсивности воздействия.

Следствия хозяйственной деятельности человека имеют в ландшафте двоякий характер. Непосредственно они выражаются главным образом в изменении отдельных компонентов и в появлении производных модификаций элементарных геокомплексов. Прямому воздействию подвергаются растительный покров, животный мир, почвы, отчасти гидрографическая сеть. В первую очередь изменяются отдельные угодья, т. е. морфологические части ландшафта, вовлеченные в хозяйственное использование. Это приводит к усилению внутри-ландшафтной дифференциации за счет возникновения разного рода модификаций, усиливающих пестроту в ландшафте, но имеющих в значительной мере обратимый характер. В пределах одного и того же ландшафта могут присутствовать одновременно морфологически отдельные части, измененные человеком в разной степени, - от мало затронутых хозяйственной деятельностью (например, массивы болот) до коренным образом преобразованных (пашни, сады на месте осушенных болот, расчищенных лесов и т. д.), с многочисленными стадиальными переходами.

Помимо прямых результатов вмешательство человека вызывает и ряд неожиданных следствий, связанных с процессами, возникающими или усиливающимися при нарушении географических взаимосвязей. Эти следствия часто необратимы и при одностороннем вмешательстве имеют нежелательный характер. Так, уничтожение лесов и естественного травяного покрова, распашка приводят к развитию эрозии и смыва почв, к заиливанию водоемов; выпас имеет своим частым следствием развевание песков или вытеснение продуктивных растительных сообществ непродуктивными; искусственное орошение приводит к поднятию уровня грунтовых вод, заболачиванию, засолению.

Подобные процессы в большинстве случаев также ведут к усилению морфологической дифференциации ландшафта благодаря появлению «непрошенных» морфологических единиц (например, оврагов, вторичных солончаков, заболоченных фаций). Необратимое направление антропогенных процессов часто соответствует также естественному развитию ландшафта и ускоряет его (например, таяние ископаемых льдов и образование аласов в якутской тайге в результате выжигания лесов).

Деятельность человека все же не всегда усугубляет внутри-ландшафтные различия. Известны примеры другого рода, когда путем мелиорации и повышения плодородия малопродуктивных земель, орошения, создания обширных пахотных площадей сглаживаются контрасты между отдельными фациями и урочищами.

В ландшафте может происходить и выравнивание морфологических контрастов, и усложнение морфологического строения, например, когда на сплошном плакорном массиве в степи создаются поля, сады, искусственные лесонасаждения, пруды (Д.Л. Арманд, 1955). Деятельность человека, отмечает Д.Л. Арманд, стирает одни природные границы, создает другие, изменяет резкость третьих. Границы преобразованных ландшафтов выражены значительно более резко, чем естественные рубежи. Следовательно, деление ландшафтов на естественные и культурные имеет упрощенный характер и не отражает многообразия форм ландшафтов, измененных человеком.

Противопоставление естественных и культурных ландшафтов как бы исключает ландшафты, измененные человеком, из сферы действия природных законов. По мнению многих исследователей, правильнее было бы разделить современные ландшафты на ряд категорий по степени и характеру их изменения в результате воздействия человека. Такие категории намечены географами (В.Л Котельниковым, Д.В. Богдановым, СВ. Калеспиком, А.Г. Исаченко, И.М. Забелиным), но подробная классификация ландшафтов с учетом воздействия человека еще не разработана.

В первом приближении намечены следующие основные категории ландшафтов.

1. Неизмененные, или первобытные, ландшафты, не посещаемые или изредка посещаемые человеком (например, ландшафты Антарктиды).

2. Слабоизмененные ландшафты, в которых человеком затронуты отдельные компоненты (например, животный мир в результате охоты), но основные природные связи не нарушены; сюда относят некоторые таежные и пустынные ландшафты, еще не вовлеченные в активное хозяйственное использование.

3. Нарушенные (сильно измененные) ландшафты, подвергшиеся длительному, но стихийному, нерациональному воздействию, которое привело к существенному нарушению природных связей и изменению структуры ландшафта в направлении, обычно неблагоприятном для человека. Ландшафты этой группы особенно многообразны. Они распространены и в тундре, где неумеренный выпас оленей приводит к смене ягельного покрова непродуктивными пустошами, и в тайге, где имела распространение подсечная система земледелия и продолжается лесоистребление, и в других зонах.

4. Преобразованные, или собственно культурные, ландшафты, 'в которых природные связи изменены на научной основе (путем рационального распределения угодий, искусственных лесонасаждений, мелиорации, преобразования стока и микроклимата) с тем, чтобы обеспечить наиболее полное и эффективное использование природных ресурсов, их охрану и воспроизводство.


Список использованных источников

1. Сочава В. Б. Введение в учение о геосистемах. Новосибирск: Наука, 1978.

2. Табаксблат Л. С. Основы почвоведение и геохимии ландшафта. Екатеринбург, 2002.

3. Перельман А. И. Геохимии ландшафта. М.: Высшая школа, 1975.

4. Преображенский В. С. Ландшафты в науке и практике. М.: Знание. 1981.

5. Арманд Д. Л. Наука о ландшафте. М.: Мысль, 1975.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий