Смекни!
smekni.com

Вывод уравнения Лапласа. Плоские задачи теории фильтрации (стр. 2 из 5)

где i - номер скважины; ri - расстояние между некоторой точкой пласта М и центром скважины под номером i.

Пользуясь методом суперпозиции, определим потенциал сложного потока

,(4.2)

где

.

Зависимость (4.2) физически означает, что фильтрационные потоки от работы каждого источника-стока накладываются друг на друга. Т.к. пласт предполагается неограниченным, то потенциал на бесконечности равен бесконечности. В центрах стоков-источников (ri=0) потенциал также равен бесконечности.

Если жидкость несжимаема, то вместо массовых дебитов можно использовать объёмные дебиты Q в зависимости (4.2).

Для определения уравнений эквипотенциальных поверхностей (изобар) следует иметь в виду, что во всех точках этих кривых значение потенциала (давления) должно оставаться неизменным. Т.о. приравнивая (4.2) к некоторой постоянной получим

,(4.3)

где П - знак произведения; С1 - постоянная.

Если дебиты всех скважин равны по величине, то

,(4.4)

Линии тока образуют семейство кривых, ортогональных изобарам.

Метод суперпозиции можно использовать не только в бесконечных пластах, но и в пластах, имеющих контур питания или непроницаемую границу произвольной формы. В этом случае для выполнения тех или иных условий на границах вводятся фиктивные стоки или источники за пределами пласта. Фиктивные скважины в совокупности с реальными обеспечивают необходимые условия на границах и задача сводится к рассмотрению одновременной работы реальных и фиктивных скважин в неограниченном пласте. Данный метод называется методом отображения источников и стоков.


2.1 Приток к совершенной скважине

Формула (4.2) основная в решении задач интерференции скважин. Рассмотрим применение этой формулы в случаях: фильтрационного потока от нагнетательной скважины к эксплуатационной; пласта с произвольным контуром питания, но удалённым от скважин и пласта с прямолинейным контуром питания.

2.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

Пусть сток О1 и источник О2 равнодебитны, т.е. имеют одинаковые по модулю массовые дебиты G. Расстояние между источником и стоком равно 2а. Исследуем поток от источника к стоку.

Проведём ось 0 х через точки О1 и О2 таким образом, чтобы точка О1 находилась от начала координат 0 на расстоянии а1, а точка О2 на расстоянии а2 (рис. 4.3).

По формуле (4.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим:

,(4.5)

где r1 и r2 - расстояния любой точки пласта до стока и источника, соответственно.

Уравнение изобар (4.4) при этом будет иметь вид

(4.6)

и соответствует окружностям, центры которых расположены на оси 0х. Если поместим начало координат в центре какой-либо окружности семейства, то радиус данной окружности определится выражением

,(4.7)

а коэффициент

. (4.8)

Подставляя С1 в (4.7) найдем

. (4.9)

Из (4.9) видно, что a1 < R < a2 или a1 > R > a2 ; следовательно, все окружности пересекают ось между стоком и источником, а значит, одна из особых точек находится внутри окружности данного радиуса R, другая - вне этой окружности. Точки О1 и О2 , положения которых на прямой 0х определяются равенством (4.7), называются взаимосимметричными относительно окружности радиуса R.

Допустим, что радиус R=¥, т.е. берём ту эквипотенциальную линию, которая является прямой. Из (4.7) следует, что в этом случае С1=1 и, как следует из (4.6), r1=r2 . Последнее равенство означает, что в числе эквипотенциальных линий есть прямая 0у, которая делит расстояние между стоком и источником пополам и параллельна оси 0у (рис.4.3).

Итак, эквипотенциальные линии (изобары) при совместном действии одной эксплуатационной и одной нагнетательной скважин в неограниченном пласте представляют собой окружности, центры которых расположены на прямой, проходящей через центры скважин (рис.4.4).. Среди окружностей есть одна, имеющая бесконечно большой радиус - прямая, которая делит расстояние между скважинами и всю плоскость течения пополам. Половина всех окружностей конечного радиуса R расположена по одну сторону от этой прямой, остальные окружности - по другую.

Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.4.4).

Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (4.5), расписанного для каждой скважины при учете отношений радиусов (рис.4.3): на контуре эксплуатационной скважины -

; на контуре нагнетательной скважины -
. Решая, полученную систему уравнений, имеем

. (4.10)

Массовая скорость фильтрации в любой точке пласта М (рис.4.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока

. (4.11)

Величина корня есть расстояние между источником и стоком 2а и, следовательно, формула (4.11) перепишется в виде

, (4.12)

Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, т.е. по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, протекшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.

Чтобы решить указанную задачу выразим скорость в (4.12) через производную расстояния по времени и, поместив начало координат в сток О1 , проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью

. (4.13)

Время обводнения Т, т.е. прохождения частицы расстояния О1О2= 2а определится из (4.13), если принять х=0; х0=2а

, (4.14)

где m - пористость; Q - объёмный дебит.

Зная Т можно найти площадь обводнения w, приравнивая объёмы TQ и mhw. Откуда

,(4.15)

Анализ формул (4.13) и (4.14) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.


4.1.2 Приток к группе скважин с удаленным контуром питания

В большинстве практических случаев контур питания находится довольно далеко. Поэтому решения данной задачи позволяют провести предварительную оценку однородных участков месторождений.

Пусть в пласте расположена группа из n скважин (рис. 4.5) с различными для общности дебитами Gi, забойными потенциалами pi и радиусами скважин ri. Расположение скважин задано и на достаточно большом удалении находится контур питания, форма которого неизвестна, но известен порядок расстояния rк от контура питания до группы скважин При этом rк на много больше расстояния между скважинами. Считаем, что дан потенциал контура j к и забойные потенциалы скважин j i.

Для определения дебитов используем формулу (4.2) при помещении точки М на забое каждой скважины, что позволяет записать n - уравнений вида

, (4.16)

где rci - радиус скважины на которую помещена точка М; rji - расстояние между i - ой и j - ой скважинами; jci - забойный потенциал i - ой скважины.

Неизвестных же - n+1, так как константа тоже неизвестна. Для нахождения константы С воспользуемся условием j=jк на удалённом контуре питания:

, (4.17)

Приближение заключается в том, что для удаления точек контура питания от скважин принимаем одно и тоже расстояние rк , что справедливо для достаточного удаления контура, учитывая что оно находится под знаком логарифма. Уравнение (4.17) и будет (n+1 ) уравнением.

Таким образом плоская задача интерференции при удалённом контуре питания сводится к решению алгебраической системы уравнений первой степени (4.16),(4.17).

При помощи данной системы можно находить или депрессию при заданном дебите, или получить значения дебитов при заданных депрессиях. При найденных дебитах можно определить пластовое давление в любой точке по (4.2), причем результат будет тем точнее, чем дальше эта точка отстоит от контура питания.