Смекни!
smekni.com

Исследование влияния состава флюида на показания термодебетомеров нефтяных эксплуатационных скважин (стр. 3 из 5)


где hкhп – глубины залегания кровли и подошвы исследуемого работающего интервала, qz– удельный расход. Если движение флюида происходит вниз по стволу, то получаемый профиль расхода будет являться уже профилем приемистости. Зависимость расхода флюида от глубины описывается выражением

дифференцирование которого дает профили расхода отдельных интервалов. Для i-го объекта дифференциальный профиль может быть построен по удельным расходам дг:

где

,
расходы в верхней и нижней точках изучаемого интервала глубин
(Рис. 5).

Рис. 5.Профиль притока по расходометрии [по А.И. Ипатову, М.И. Кременецкому].


РАБОТА С ДЕБИТОМЕРОМ НА СКВАЖИНЕ И ИНТЕРПРЕТАЦИЯ ДЕБИТОГРАММ

Переход от приращения ΔT к объемной скорости Q движения потока осуществляется по эталонной кривой ΔТ=f(Q), получаемой по результатам измерений ΔT при различных скоростях движения жидкости в трубах. Диаметр труб должен быть равен диаметру эксплуатационной колонны, в которой намечается проводить замер СТД.

1– интервал перфорации; 2, 3 в эксплуатационной колонне соответственно нефть вода 4–интервал с движением жидкости по колонне; 5 – движение жидкости отсутствует; 5–интервал притока; 7, 8 – соответственно точки первичного и вторичного замеров; аи б – общий и удельный дебиты.

Рис. 6. Пример исследования скв. 38 Красноярской площади.

Измерения аппаратурой СТД в скважине проводят по точкам или непрерывно. При работе по точкам показания отсчитывают приблизительно через 5 мин после включения тока питания датчика, когда практически заканчивается процесс установления теплообмена. Непрерывная запись осуществляется при неравновесном режиме работы мостовой схемы. В результате измерений получают кривую изменения приращения температуры датчика с глубиной, называемую дебитограммой (Рис. 6).

При переходе через интервал, на котором жидкость поступает в колонну и, следовательно, изменяется скорость движения потока, происходит изменение приращения температуры датчика; по этому изменению и выделяют отдающий жидкость интервал. Вследствие наличия радиальной составляющей движения потока против интервала поступления жидкости в колонну переход от значения приращения под этим интервалом к меньшему значению над ним происходит не монотонно, а так, как это показано на Рис. 6. В кровле интервала наблюдается минимум; переход от минимальных показаний к установившимся значениям приращения над интервалом притока происходит на длине, зависящей от режима потока, но не превышающей 40 диаметров скважины. Иногда минимум в кровле получается нечетким или совсем не отмечается.

Подошву интервала, на котором жидкость поступает в скважину, отмечают по началу спада кривой (при движении снизу вверх), кровлю – по минимуму кривой. Если минимум против кровли интервала не выделяется, границы его отмечают по точкам перегиба кривой. Мощность выделяемого при этом интервала может быть несколько завышена.

За изменение приращения температуры на ί-том интервале притока (Δί) принимают разницу между усредненными показаниями ΔТίниже интервала притока и усредненными установившимися показаниями ΔТίвыше интервала. По этим данным, пользуясь эталонировочной кривой ΔT = f(Q), можно получить прирост объемной скорости ΔQiна i-том интервале притока. Способ определения прироста объемной скорости ΔQi по изменению приращения температуры Δί иллюстрируется Рис. 7. Для повышения однозначности интерпретации необходимо следить за параметрами датчика и учитывать местоположение исследуемого участка разреза относительно интервала перфорации. На диаграмме имеется ряд характерных участков, на которые при интерпретации следует обращать внимание в первую очередь.


1, 2, 3 –отдающие интервалы. Остальные обозначения см. Рис. 6

Рис. 7. Схематические диаграмма приращения температуры (а),градуировочная характеристика (б), профиль притока (в).

1.Участок, относящийся к эксплуатационной колонне выше самого верхнего интервала притока с показаниями ΔTэк соответствующими суммарному дебиту скважины QΣ. Последний определяется по измерениям на поверхности.

2.Участок, относящийся к эксплуатационной колонне ниже самого нижнего интервала притока, где скорость равна нулю. Показания в этом случае (ΔТв нефти и ΔТ в воде) должны соответствовать значениям, полученным при эталонировании прибора в неподвижной среде при заданной силе тока питания датчика.

Если в скважине имеется раздел нефть–вода, то четко отмечается рост приращения при переходе от воды к нефти. Если этот раздел располагается в той части скважины, где нет движения жидкости, то при переходе от воды к нефти должно наблюдаться изменение приращения от ΔТ до ΔТ. Если в воде значение приращения температуры отличается от ΔТ, то это служит надежным признаком движения жидкости по скважине и наличия притока в нижней части скважины.

3. Участок, относящийся к эксплуатационной колонне в промежутке между отдающими интервалами, – участок установившегося потока ΔТу. Он может иметь место при условии достаточного расстояния между кровлей нижележащего и подошвой вышележащего интервалов.

4. Участок, относящийся к лифтовой колонне, при входе в которую (в связи с резким возрастанием линейной скорости движения жидкости) величина приращения снижается до величины ΔТлк. Если эксплуатация ведется по затрубному пространству, то при входе в лифтовую колонну скорость потока снижается, а величина приращения температуры возрастает.

Сняв отсчеты по перечисленным участкам, можно определить профиль притока в исследуемом интервале. Для более точной интерпретации дебитограмм необходимо иметь данные о характере жидкости, заполняющей исследуемый интервал скважины, полученные резистивиметром, влагомером, плотностномером или другим способом, и данные о дебите и составе жидкости, определяемые на поверхности. В скважине получают, как правило, минимум две дебитограммы (вторая повторная), одну термограмму и кривую ПС. Прежде чем приступить к интерпретации дебитограмм, необходимо проверить их качество. Дебитограмма считается качественной, если при повторении обеспечена воспроизводимость не хуже ±0,5°С. Повторяемость дебитограмм должна обеспечиваться не только по форме, но и по абсолютным значениям измеренного сигнала на идентичных глубинах.

В качестве примера на Рис. 6 показаны результаты исследования скважины термоэлектрическим дебитомером и их интерпретация. Скв. 38 Красноярской площади Пермской области эксплуатировалась фонтанным способом и имела следующие интервалы перфорации: 1364– 1369; 1377–1381; 1400–1404 м (песчаники). Общий дебит нефти из скважины не превышал 14 м3/сут. По дебитограмме можно сделать вывод, что отдающими являются интервалы 1365,6–1369 и 1379,2–1381 м. Величина приращения температуры для суммарного дебита Qσ = 14 м3/сут составляет ΔТэк » 27°С, а в неподвижной нефти (Q= 0) ΔТ » З0°С. Считая, что для данного диапазона значений объемных скоростей зависимость приращения сопротивления от дебита линейная, получим в интервале 1365,6–1369 м дебит 3 м3/сут, в интервале 1379,2–1381 м – 10 м3/сут.

Нижний интервал перфорации практически не работает. Из дебитограммы видно, что на глубине 1363 м находится окончание лифтовых труб, а на глубине 1403 м – раздел нефти и воды (для использованного датчика ΔT = 14°С).

Анализ дебитограмм, снятых термокондуктивным дебитомером, показал, что эффективность выделения по ним отдающих интервалов зависит от условий измерения. В скважинах с однородной средой во всех случаях по измерениям аппаратурой СТД уверенно выделяются все работающие интервалы вскрытого пласта, профиль притока в этом случае характеризуется количественно. В безводных скважинах, в которых имеется застойная вода, и в скважинах, дающих нефть с водой, выделение отдающих интервалов усложняется, а дифференциация дебитограмм СТД в ряде случаев снижается.

А, Б–замеры резистивиметром. Условные обозначения см. рис. 6.