регистрация / вход

Осушение строительного котлована

Выбор способа водопонижения. Фильтрационный расчет. Построение кривой депрессии. Расчет притока воды в котлован, водосборной системы. Конструирование водосбора внутри котлована. Выбор конструкции зумпфа. Расчет системы всасывающей и напорной сети.

Нижегородский Государственный Архитектурно

Строительный Университет

Кафедра гидравлики

Курсовая работа

Осушение строительного котлована

Выполнил: студент гр.197

Николаева А.О.

Проверил

Сухов С.М.

Н.Новгород-2005


Содержание

Цель работы…………………………………………………………….…..3

Исходные данные……………………………………………………….….4

1. Выбор способа водопонижения………………………………….…5

2. Фильтрационный расчет……………………………………………6

2.1. Построение кривой депрессии……………………………………...6

2.2. Расчет притока воды в котлован…………………………………...7

3. Расчет водосборной системы………………………………….……7

3.1. Конструирование водосбора внутри котлована……………..……7

3.2. Выбор конструкции зумпфа……………………………………….14

4. Подбор насосной установки………………………………………14

4.1. Расчет системы всасывающей и напорной сети…..…………….14

4.2. Подбор марки насоса……………………………….…………..…17

5. Расчет ливневого коллектора……………………………………..18

Список использованных источников …………………………………..20


Цель работы

Технология строительного производства на вновь строящихся или реконструируемых объектах при выполнении земляных, подготовке оснований и монтаже фундаментов в определенных гидрогеологических условиях следует предусматривать производство работ по искусственному понижению уровня грунтовых вод (УГВ).

Этот комплекс вспомогательных работ должен исключать нарушение природных свойств грунтов в основаниях возводимых сооружений и обеспечивать устойчивость откосов устраиваемых в земляной выемке.

В соответствии с индивидуальным заданием необходимо выполнить гидравлический расчет осушения строительного котлована для схемы указанной на рисунке 1.

Исходные данные

Таблица 1

Характеристики строительного объекта

Материалы инженерно-геологических

изысканий

Отметка верха строительного котлована Глубина строительного котлована Размеры котлована по дну Грунты Отметки
Zв, м Нк, м

Ширина

В, м

Длина

L, м

Водопро-ницаемый Водоупор

Грунтовых вод

Zг,м

Водоупора

Zву,м

3,00 5,0 30 75

Песок ср. и

мелк.зерн.

Глина 2,0 -5,0

1 Выбор способа водопонижения

В соответствии с пунктом 2.1 СНиПа на вновь строящихся и реконструируемых объектах следует предусматривать производство работ по искусственному понижению уровня грунтовых вод (УГВ).

Согласно таблице 41.4[11] в зависимости от притока подземных вод и вида грунта осушение котлована может быть осуществлено с применением открытого водоотлива, легких иглофильтровых установок (ЛИУ), буровых скважин с насосами, дренажных систем и др. Рассмотрим некоторые из них.

1.1 Открытый водоотлив

Применяется при разработке неглубоких котлованов и незначительном притоке подземных вод в водонасыщенных скальных, обломочных или галечных грунтах. При открытом водоотливе широко применяются центробежные насосы. Открытый водоотлив организуют следующим способом. По периметру котлована устраивают дренажные канавки с уклоном 0,001…0,002 в сторону приямков, из которых по мере поступления вода откачивается с помощью насосов. По мере разработки котлована приямки постепенно заглубляются вместе с канавками. Для исключения нарушения природной структуры грунтов основания вода не должна покрывать дно котлована.

В мелкозернистых грунтах открытый водоотлив приводит к оплыванию откосов котлованов и траншей, к разрыхлению грунта в основаниях зданий и сооружений. Здесь целесообразно применить глубинное водопонижение уровня грунтовой воды.


1.2 Легкие иглофильтровые установки (ЛИУ)

Используют для глубинного водопонижения грунтовых вод на глубину 4-5м в песчаных грунтах. При этом способе водопонижения иглофильтры располагают по периметру котлована обычно с шагом 0,8…1,5м. Откачку воды из иглофильтров производят с помощью вихревого насоса через всасывающий коллектор. При этом вокруг каждого иглофильтра образуются депрессионные воронки, которые, соединяясь, и приводят к понижению уровня грунтовых вод в будущем котловане или траншее.

Для понижения УГВ свыше 5м применяют многоярусные легкие иглофильтровые установки, которые требуют, как правило, расширения котлована и увеличения земляных работ.

1.3 Понижение УГВ эжекторными иглофильтрами

Для водопонижения в грунтах с большим коэффициентом фильтрации и при близком залегании водоупора от разрабатываемой выемки используют эжекторные установки ЭИ-2,5; ЭИ-4 и ЭИ-6, состоящие из иглофильтров с эжекторными водоподъемниками, распределительного коллектора и центробежных насосов. Эжекторные установки позволяют понижать уровень грунтовых вод до 25м.

1.4 Понижение УГВ с электроосмосом

В пылевато-глинистых грунтах, имеющих коэффициент фильтрации менее 2м/сут, искусственное водопонижение осуществляют с помощью электроосмоса в сочетании с иглофильтром. Его выполняют в такой последовательности. По периметру котлована с интервалом 1,5…2м располагают иглофильтры, а между ними (в шахматном порядке относительно иглофильтров) по бровке котлована забивают металлические стержни из арматуры или труб небольшого диаметра. Эти стержни подсоединяют к положительному полюсу источника постоянного тока напряжением 40…60 В, а иглофильтры - отрицательному. Под действием тока рыхлосвязанная поровая вода переходит в свободную и, перемещаясь от анода к катоду (иглофильтру), откачивается, в результате уровень грунтовых вод понижается. При этом способе водопонижения расход электроэнергии составляет 5…40 кВт/ч на1 м3.

В связи с тем что стоимость искусственного водопонижения находится в прямой зависимости от продолжительности работы откачивающих машин, добиться сокращения затрат можно при максимальном сокращении сроков строительства.

Заданием на проектирование определено понижение УГВ в строительном котловане с помощью открытого водоотлива .[1]


2 Фильтрационный расчет

2.1 Построение кривой депрессии

По отношению к воде горные породы можно разделить на две основные группы :

водопроницаемые и водоупорные . Водопроницаемые горные породы быстро поглощают воду и легко её транспортируют . В зернистых породах – галечниках, гравии и песках – вода движется по промежуткам между частицами а в массивных скальных и полускальных породах по трещинам или карстовым породам . Водоупорные горные породы практически не проводят через себя воду, так как водопроницаемость равна нулю . К ним относятся глины , тяжелые суглинки , разложившийся уплотненный торф . Водопроницаемость – это способность горных пород пропускать через себя воду . Величина водопроницаемости зависит от размеров пустот , диаметра пор и степени трещиноватости . Мера водопроницаемости – коэффициент фильтрации Кф, который равен скорости фильтрации при гидравлическом уклоне . Фильтрация – это движение жидкости в пористой среде .

Скорость фильтрации при установившемся движении определяется по зависимости Дарси.

V= Кф*iм/с , (1)

где i- гидравлический уклон

Расход фильтрующей жидкости определяется по зависимости :

Q=w* Кф*iм3/с , (2)

где w- площадь живого сечения потока.

В случае широкого фильтрационного потока расчет ведут на единицу его длины и называют удельным расходом:

q=Q/L= Кф*i*hм2/с , (3)

где h-глубина равномерного движения грунтовых вод.

1.Глубина строительного котлована

Нк=5,0 м

2. Вычисляем радиус влияния. Радиус влияния зависит от рода грунта и его можно определить по зависимости , определяемой формулой Кусакина И.П.[4,9]:

R=3000S(Кф0,5) (4)

где S - глубина водоносного слоя,

S=Zгв-Zд , (5)

где Zд=-2,0 м - отметка дна котлована ,

Кф=0,00011574 м/с - коэффициент фильтрации грунта ,

S=2-(-2)=4 м

R=3000*4*(0.000115740,5)=129,1 м

3. Кривая депрессии АВ – линия свободной поверхности грунтовых вод.

Для построения линии АВ:

а) Определяем вспомогательную величину h :

h=mHк2/R(6)

где m=3 – заложение откоса строительного котлована, задается в зависимости

от грунта ;

Нк – глубина строительного котлована;

R – радиус влияния.

h=3*5 2/129,1=0,581

б) Определяем высоту зоны высачивания по формуле

hвыс=h(1-0,3(T/Hк)1/3 (7)

где Т=Zд-Zву=3,0 м - расстояние между дном котлована и водоупором

hвыс= 0,581*(1-0,3*(3,0/5)1/3)=0,434 м

в) Определяем форму кривой депрессии АВ для сориентированного по координатным осям чертежа

y2= H12- x *( H12-H22)/(R-mhвыс) (8)

где H1 =7м– расстояние между УГВ и уровнем водоупора

Н2 – расстояние между точкой высачивания и уровнем водоупора

Н2 =Т+ hвыс=3+0,434=3,434м

y2=(7)2- x * ((7)2-(3,434)2)/(129,1-3*0,434)=49-0,29x

Расчет сводим в таблицу 2

Таблица 2

x 0 10 20 30 40 50 60 70 80 90 100 110 120 127,798
y 7 6,79 6,57 6,35 6,12 5,87 5,62 5,36 5,08 4,79 4,47 4,13 3,77 3,434

По результатам вычислений строим кривую депрессии (рис.2)

2.2 Определение притока воды в котлован

Определяем величину расхода (притока) фильтрационных вод на один погонный метр периметра дна котлована. Принимаем Кф=0,00011574 м/с

Определим q- удельный фильтрационный расход по уравнению Дюпюи:

q=Kф*( H12-H22)/(2L) (9)

где L=R- m* hвыс=129,1-3*0,434=127,798м (10)

q=0,00011574*((7)2-(4,434)2)/(2*127,798)=0,000016848 м2/с=1,46м2/сут

Определяем общий фильтрационный расход

Qф=q(2В+2L) (11)

где (2В+2L) – фронт сбора фильтрационных вод( периметр дна котлована),

В=30 м , L=75 м

Qф= 0,000016848(2*30+2*75)=0,003538 м3/с=305,69 м3/сут

Вычисляем расход инфильтрационных вод притекающих в котлован . Учитывая сведения СНиП 2.01.01-82 «Строительная климатология и геофизика» в расчетах условно принимаем , что Qинф=5Qф

Qинф=5*0,003538 м3/с= 0,01769 м3/с (12)

Определяем общий расход как сумму расходов фильтрационных и инфильтрационных вод :

Qпр=Qинф+Qф

Qпр=0,003538+0,01769=0,021228 м3/с


3. Расчет водосборной системы

Назначение системы: собрать фильтрат и отвести в зумпф, оттуда затем откачать с помощью насоса.

Конструируем открытый водоотлив лотковой конструкции

3.1 Конструирование водосбора внутри котлована

По периметру дна котлована прокладывается два открытых канала, каждый из которых имеет протяженность L+В. Система рассредоточено по всей длине принимает и отводит в зумпф фильтрационный поток с расходом Qрасч

Qрасч=1/2 Qпр (13)

Qрасч=1/2*0,021228=0,010614 м3/с

В расчете условно принимается, что весь расход сосредоточено приходит в начало каждого канала

Общие рекомендации по проектированию

1. Ширина лотка по дну не менее 30 см (ширина лопаты)

2. Уклон i=0,001ё0,005

Расчетные формулы:

v = C (14)

Q = Qрасчетн= Сw (15)

(16)

(17)

w= b*h (18)

(19)

где: v – средняя скорость потока, м/с

С – коэффициент Шези

R – гидравлический радиус, м

w – площадь живого сечения, м2

- смоченный периметр, м

i=0,005 – уклон дна канала

n – коэффициент шероховатости (принимаем n = 0,011 -земляной канал)

h – высота сечения, м .

Относительная ширина канала гидравлически наивыгоднейшего сечения прямоугольной формы β определяется по формуле

β = b/ h=2

b =2h– ширина сечения, м

Найдем зависимость Q=f(h) для гидравлически наивыгоднейшего сечения (ГНС) лотка

Таблица 3

h, м b,м м2 м R, м С V,м/с Q, м3/с
0,15 0,3 0,45 0,6 0,075 59,04 1,143 0,05145
0,1 0,2 0,02 0,4 0,05 55,178 0,872 0,0175
0,05 0,1 0,005 0,2 0,025 49,158 0,549 0,00583

По данным таблицы 3 строим график Q=f(h) (рис.3)

Выбираем соответственно расходу Q=0,010614 м3/с h=0,075 м, следовательно ширина лотка b=2*h=2*0,075=0,15 м. Полученная по расчету ширина лотка получается меньше ширины лопаты (30 см), следовательно принимаем сечение лотка:

b=30 см=0,3м;

h=15 см = 0,15 м.

Развертка по трассе от истока до зумпфа приводится на рисунке 4.


3.2 Выбор конструкции зумпфа

Местоположение выбирается таким образом, чтобы водоотводящие каналы выполняли свои функции. Рекомендуется :

а) заглублять ниже самого низкого уровня воды в нем на 0,7 м , чтобы всасывающий всегда находился под водой и в него не попадали воздух и грунт со дна ;

б) запроектировать в виде либо деревянного квадратного колодца а*а и глубиной h , либо в виде круглого колодца из стандартной фальцевой железобетонной трубы диаметром d ;

в) вместимость зумпфа принимается больше чем Q притока за 5 минут

Wзум=Qпрt (20)

Wзум=0,021228*300=6,3684 м3

Я тебя люблю Принимаем высоту зумпфа hзп=2 м

a=м

Принимаем зумпф квадратного сечения с размерами a=1,8м; a=1,8м; и высотой h=2м, объём которого Wзп=6,48 м3

t=305 c


4.Подбор насосной установки

Насос обеспечивает перекачку собранного фильтрата в приемник удаляемой воды:

а) в черте населенного пункта – ливневые канализационные сети

б) в окрестной местности – близлежащие водоемы, овраги.

Общие рекомендации к расчету

1. Остановка насоса при достижении минимального уровня воды в зумпфе и пуск ее в момент достижения максимального наполнения зумпфа должна производится по сигналу датчика уровня;

2. По СНиПу обязательно назначается на 1ё2 рабочих насоса 1 резервный;

3.Подача насоса должна быть больше притока воды Qнас>1,5 Qпр ;

4. Напор насоса должен обеспечивать перекачку воды, т.е. Ннас> Нрасч;

5. При выборе погружного насоса ГНОМ необходимо учитывать его размеры.

4.1 Расчет системы всасывающей и напорной сети

Предпосылки

а) Скорость во всасывающем и напорном трубопроводе в первом приближении принимается равной 1м/с;

б) На практике, обычно диаметр всасывающего трубопровода больше диаметра напорного, поэтому скорость во всасывающей линии около 0,7м/с, а в напор ной около 1м/с;

в) Всасывающая линия рассчитывается с учетом потерь в местных сопротивлениях (короткий трубопровод);

г) Напорная линия рассчитывается как простой трубопровод без учета местных потерь

Напорная линия

1. Определяется диаметр напорного трубопровода из уравнения неразрывности потока, принимая скорость в нем V=1м/с

d= (21)

d= м

По таблице [1] принимается стандартный диаметр dст=0,175 м

2. Для выбранного стандартного диаметра уточняем скорость в трубопроводе – фактическая скорость Vф=0,883 м/с

3. Определяются потери напора по длине по формуле Дарси-Вейсбаха

(22)

l=lнап – длина трубы, отводящей фильтрат, т.е. расстояние от оси насоса до оси ливневого коллектора, принимается в курсовой работе равной 200м

g=9,8 м/с2 -ускорение свободного падения ,

l - коэффициент гидравлического трения ( коэффициент Дарси), по формуле Артшуля

(23)

где Кэ-эквивалентная равномерно зернистая шероховатость , для неновых труб Кэ=1,4 мм,

Rе- число Рейнольдса

(24)

где ν- коэффициент кинематической вязкости , зависит от температуры жидкости

ν (t=200C) = 0,0101 см2/с=0,00000101 м2/с

λ=0,03335

4. Строится пьезометрическая линия р-р (рисунок 5), для чего назначается величина свободного напора Нсв=5ё10м (Из опыта строительного производства - так называемый запас).

Нсв=5 м

Всасывающая линия

Всасывающую линию рассчитываем как короткую трубу, т.е. учитываем и местные , и линейные потери. Потери напора в местных сопротивлениях вычисляются по формуле Вейсбаха :

(25)

где xj – коэффициент потерь в местных сопротивлениях :

для сетки с клапаном xcкл=10 ;

для плавного поворота на 900 xпов=0,55;

hjcкл= 0,3978 м ;

h j пов=0,02188 м ;

м.

Линейные потери определяются как сумма линейных потерь в горизонтальной и вертикальной части всасывающей линии по формуле Дарси-Вейсбаха :

а) рассчитывается отдельно для вертикального участка

где - lв = hнаc - длина вертикального участка, определяется из геометрии расчетной схемы

lв =Hk+(B+L)i+0,7+0,5=6,725 м

б) рассчитывается отдельно для горизонтального участка :

где - lг – определяется из геометрии расчетной схемы (длина наклонного участка и расстояние от бровки до оси насоса, и половина ширины зумпфа на запас )

lг=15+0,5+0,5*1,8=16,4 м

м

Сумма всех потерь на всасывающей линии hf :

hf=hj+hl=0,175+0,42=0,595 м

Строится напорная Е-Е и пьезометрическая р-р линии (рис.5).

4.2 Подбор марки насоса

Насос назначается из трех характеристик:

- производительность Qнас

- напор Н

- вакуум Нвак

Qнас=1,5 Qпр=1,5×0,021288=0,0311 м3/с =112 м3/час;

Н= Нман+;

Нман=hlнап+Hсв

Нман=1,516+5=6,516 м ;

=6,725 м ;

H=6,516+6,725=13,241 м .

Фактический вакуум определяется с помощью уравнения Бернулли:

(26)

Для плоскости сравнения 0-0 и выбранных сечений I-I и II-IIбудем иметь:

=0;

;

;

;

;

;

.

Уравнение преобразуется в следующий вид:

где hf= 0,595 м ;

=6,725 м ;

Характеристики насоса 6К-12:

- подача Q=160 м3/час;

- напор H=20,1 м;

- вакуум Hвак=7,9 м;

- мощность двигателя N=28 кВт.


5Расчет ливневого коллектора

Назначение ливневого коллектора: ливневой коллектор служит для транспортировки отводящихся вод в очистные сооружения.

Ливневые коллекторы выполняются в виде каналов замкнутого поперечного профиля.

Гидравлический расчет в условиях безнапорного равномерного движения выполняется по формуле Шези:

Формула расхода:

При расчёте канализационного коллектора используется метод расчёта по модулю расхода[12] , для этого необходимо определить расходы и скорости для различных степеней наполнения коллектора а=h/d, как некоторой части от расхода и скорости, соответствующей его полному наполнению.

(27)

(28)

где - В и А коэффициенты зависящие от формы поперечного профиля и степени наполнения канала(a), определяются по графику «Рыбка» [1];

- Wп и Kп модули скорости и расхода при полном наполнении коллектора [1,5]

- Q– подача насоса.

Расчет выполняется с учетом некоторых замечаний:

- в практике строительного производства обычно принимают степень наполнения равную а=0,5-0,7;

- коэффициент шероховатости канализационных труб n принимают равным n=0,011-0,014, принимаем n=0,013;

- уклон коллектора принимается в пределах i=0,001-0,005.

1. С графика «Рыбка» [1] снимается значение А для заданной степени наполнения а=0,6

А=0,6

2. Определяется модуль расхода :

где i=0,005.

м3/с

3.Из таблицы [1] подбираются по высчитанному модулю расхода Кп и коэффициенту шероховатости n=0,013 ближайший диаметр d=300мм и соответствующие табличные данные КТ=0,971м3/с и WnТ=13,75м/с.

4.Уточняется истинное значение наполнения коллектора, соответствующее принятым модулю расхода и модулю скорости:



5.По графику «Рыбка» для вычисленного значения А=0,65 определяется степень наполнения аф=0,57 , этому наполнению соответствует В=1,07

6.Глубина равномерного движения находится из формулы :

;

;

.

7. Скорость движения определяется по формуле:

;

м/с.



Список использованных источников

1. Абрамов С.К. Найфельд Л.Р. Скричелло О.Б. Дренаж промышленных площадок и городских территорий.- М.: Гос. Издательство литературы по строительству и архитектуре , 1954

2. Грацианский М.Н. Инженерная мелиорация . М.: Издательство литературы по строительству , 1965

3. Калицун В.И. и др. Гидравлика ,водоснабжение и канализация –М.: Стройиздат,1980

4. Козин В. Н. Расчет каналов имеющих замкнутый поперечный профиль в условиях безнапорного течения. - Горький.: ГИСИ, 1984.

5. Курганов А. М., Федоров Н. Ф. Гидравлические расчеты систем водоснабжения и водоотведения. - Л.: Стройиздат, 1986.

6. Насосы разные: Строительный каталог. Ч.10. Санитарно-техническое оборудование. Приборы и автоматические устройства. М.: ГПИ Сантехпроект,1984

7. Прозоров И.В. и др. Гидравлика , водоснабжение и канализация .М.: Высшая школа , 1990

8. СНиП 2.01.01.-82 «Строительная климатология и геофизика»

9. СниП 3.02.01-87 «Земляные сооружения, основания и фундаменты»

10. Справочник монтажника. Монтаж систем внешнего водоснабжения и канализации./Под ред. А. К. Перешивкина. - М.: Стройиздат, 1978.

11. Справочник по гидравлическим расчетам /Под ред. П.Г.Киселева .М.: Энергия , 1972

12. Справочник проектировщика /Под ред. И.Г. Староверова//Внутренние санитарно-технические устройства Ч.1.- М.: Стройиздат

13. Чугаев Р.Р Гидравлика.-Л.:Энергия ,1982

14. Штеренлихт Д.В. Гидравлика .- М.: Энергоатомиздат,1984

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий