Смекни!
smekni.com

Проекция Гаусса (стр. 2 из 2)

7. Вычисл. координ. вершин трапеции м. 1:10000 в пр. Гаусса

Сначала по специальным таблицам находят координаты и сближение меридианов углов рамки трапеции 1:25000, в которую входит трапеция м. 1:10000. Выбор данных производится по широте В и отклонению угла рамки от осевого меридиана l=L-L0. Найденные значения выписываются на схему. Затем вычисляют прям. координ. и сближ. меридианов для углов рамки трап. м. 1:10000 линейным интерполированием м/у соответствующими значениями для улов рамки трап. м. 1:25000. Результаты выпис. на схему. В абциссы углов, полученных при интерполировании, вводят поправку, которую берут из таблицы. Поправка вводится с -, т.к. параллели в пр. Г. изобр. дугами. Попр. водят в точки, расп. на среднем меридиане трап. м. 1:25000. Найденные знач. для трап. м. 1:10000, предварительно + к ординатам 500 км и указав впереди № зоны.

9. Определ. дирекционного угла и длины линии между двумя точками на топограф. карте графич. и графоаналитич. методом

Для определ. дир. угла по графич. координатам вычисл. румб линии, к пр. АВ, по ф.

rAB=arctg∆yAB/∆xAB.

Затем по румбу находят дир. угол αАВ. Для этого выч. гориз. пролож. SAB по ф.


SАВ=∆xAB/cosrAB, SAB=∆yAB/sinrAB, SAB=√∆xAB2+∆yAB2.

Для опр. дир. угла. по графич. методу нужно изм. дир. угол с помощью геодезич. транспортира. Горизонт. пролож. измерть с помощью циркуля и масшт. линейки. Расхождения между полученными значениями 2 способами на должны превышать в дир. угле 20', в гор. прол. - 4 м.

10. Сущность и виды геод. изм.

Изм. к-л величин. значит сравнить ее с другой однородной ей велич., принятой за 1-цу меры. В результате изм. находится число = отношению измеряемой величины к 1 меры, его назыв. результатом изм. Изм.: прямые - когда определяемую величину получают из непосредственного сравнения с эталоном; косвенные - знач. величины получают вычислением по другим уже изм. велич. Всякое изм. предусматривает наличие 5 факторов: объекта изм., человека, инструмента изм., метода изм., внешней среды. Изм проводимые в одинаковых условиях при котор. результ. можно считать одинаково достоверными – равноточные, изм. проводимые в неодинаковых условиях котор. отдельные изм. оказываются недостоверными назыв. неравноточными.

11. Классиф. ошибок изм. Св-ва случ. ошибок изм.

Отклонение результата изм. от его точного изм. назыв. ошибкой изм. ∆=l-x, ∆-ошибка, l-результат изм., х-точное знач. Классиф.: По характеру действия: грубые - величина которых совершенно недопустима при данных условиях изм.; систематические - при повторных изм. либо остаются без измен., либо измен. по к-л определенному закону, могут быть: постоянно, переменно, односторонне действующие; случайные - ошибки в последовательности появления которых нет никакой закономерности. По источнику происхождения: инструментальные, внешние, личные. Св-ва случ. ошибок: Ошибки по абсолютной величине не превосходят некоторого предела. Число + и – ошибок равных по абсолютной величине встречается одинаково часто. 3Чем меньше по абсолют. велич. ошибка тем она чаще встреч. и наобор. 4Чем больше число ошибок, те больш. среднеарифметическое из них стремится к 0.

12. Сред., вероят., СКО и предельн. ошибки изм., связь м/у ними. Виды распр ошибок, Абсолют. и относит. ошибки изм.

Средняя ош. получена как среднеарифм. знач. из истинных ош. Ее получ. по абсолютным знач. ош.

v=[|∆|2]/n,

∆ - среднеарифм., n-число изм. Вероятная ош.-такое знач. случ. ош. при данных условиях по отношению к которой ош. <и>по абсолют. велич. встречаются одинаково часто r=2/3m. СКО как мера точности изм. усиливает возвед. в квадр. знач. больших по абсолютной величине ош., что проектир. правильность суждения о надежности m=√[∆2]/n. При неогр. числе изм. знач. СКО будет приближенным → вычисл. СКО самой ош. и назыв. ее надежностью изм. mml=ml/√2n. Зная СКО установить предельную ош., абсолют. знач. которой счит. верхней границей допустимых при данных условиях изм. размеров ош. ∆прm, где ґ=2; 2,5; 3. Преимущество СКО: Учитывают влияние больших по величине ошибок. СКО определенная из небольшого числа изм. мало отлич от СКО большого числа таких же изм. Истинная, средняя, вероятная, СКО ош. назыв. абсолютными в тех случаях когда на точность изм. влияет размер определяемой величины, то оценка точности по абсолют. ош. становится недостаточной. Во всех таких случаях для точности применяют понятие относит. ош. - отвлеченное число выраж. отнош. абсолют. ош. измерения к его результату.

13. Матем. обраб. равноточн. изм. Арифм. среднее, СКО арифмет. середины

Имеется ряд равноточ. изм. l1, l2…, ln. За окончательное знач. изм. величины приним. среднее знач или L=(l1+l2+ … +ln)/n=[l]/n. Ряд случ. ош.

1=l1-x, ∆2=l2-x,….,∆n=ln-x,

где х-точное знач. изм. величины. Сложим все и получ. [∆]=[l] – nx. x=[l]/n – [∆]/n. При бесконечном числе изм. среднее арифм. знач. их находится ближе всего к точному их значению х, чем любой из результатов измерений (l1, l2…ln) поэтому его назыв. вероятнейшим знач. измеренной величины.

L=[l]/n, L=l0+[E]/n,

l0-наименьшее из всех результатов изм., Е-разница м/у каждым наименьшим и результатом изм. Е=l1-l0. Если возмем – м/у средним арифм. и каждым результатом изм. то получим v1=l1-L, v2=l2-L,…., vn=ln-L. Сложим все и получ.

[v]=[l] – [l]/n*n.

Величину v назыв. уклонением от вероятнейшего знач. или вероятнейшими ош. СКО арифм. середины, если х-точное значение определ. велич., L-арифметич. середина, М-ош. вероятн. знач. М=L-x.

8. Способы получ. размеров по меридиану и параллели литсов топограф. карт мелких и ср. м. в мере

Разграфка листов крупномасштабн. планов произв. сл. способом: для съемки и составл. планов свыше 20 км2 за основу разграфки принимают лист карты 1:1000000, а в случае прямоугольной разграфки 1:5000.

1:1000000–4–6°, 1:500000–2–3°, 1:300000–1°20–2°, 1:200000–40'-1° 1:100000–20'-30', 1:50000–10'-15', 1:25000–5'-7'30», 1:10000–2'30»-3'45».

16. Оценка точности рез. равноточ. изм. по 2-х изм. Ф., порядок вычисл.

На пактике часто произв. 2-ые равноточные изм. Изм. некот. однородн. велич. и получ. результатыl1', l2'…ln' и l»1, l2»…ln», d=li'-li». При абсолютно точных знач. – этих велич. должны быть =0. Но этого не происх. т. к. влияют ош. можно их вычисл. по ф. Г. md=+-√[d2]/n. Ош 1-го изм. ml=√[d]2/2n, вероятнейшего измерения. ml=0.5√[d2]/n, предельное изм. ∆пр=3m. Эти ф. справедливы когда отсутств. систем. ош. Если есть систем. ош. то ее нужно опред. и искл. Если бы не было случ. ош. тогда знач. систематич. ош. можно получить применяя ф. арифм. середнего. Q=d, Q=[d]/n. Искл. знач. ош. из – получим остаточные разности i=di-Q.

17.СКО арифметической середины. Вывод ф.

M=L-x. Для вывода этой формулы примем ∆1=l1-x, ∆2=l2-x,…,∆n=ln-x. Сложим и разделим все и получим [∆]/n=[l]/n-xn/n. Возведем это равенство в квадрат

М2=(∆12+∆22+ … +∆n2+2∆12+2∆13+ … +2∆1n+2∆23+2∆24+ … +2∆2n+ … +2∆n-1n)/n2.


Т.к. в этой ф. на основании св-ва случ. ош. удвоенные произв. могут иметь разные знаки и при возрастании числа сумма их будет →0, поэтому отбросив их получим приближен. равенство.

M2=(∆12+∆22+ … +∆n2)/n2=[∆2]/n2.

М=ml/√n, ML=ml/√n-СКО вероятнейшего знач. Следовательно СКО арифм. серед. равноточ. изм. одной и той же велич. √n меньше СКО отдельного изм. → вероятн. знач. будет наиболее точным по сравнению с каждым результатом изм.

18. СКО ф-и общего вида: U=f(X1, X2,…, Xn). Вывод ф.

U=f(X1, X2,…, Xn),

где X1, X2, Xn непосредственно изм. велич. содерж. ош. ∆х1, ∆х2, ∆хn. Если меняются знач. аргументов ф-и на велич. ош., то меняется и сама ф-я

U+∆U=f(x1+∆х1, х2+∆х2, хn+∆хn).

19. СКО ф-и вида U=KX(K-const).Вывод ф.

U=KX, где K-const, х - непоср. изм. велич. Если х изм. ошибочно, то и ф-ия будет иметь ош. U+∆U=K(x+∆x), где ∆U-случ. ош. Произведем вычисл. и получ. ∆U=K∆x

mU=mx√∑Ki2.

20. СКО ф-й вида U=X+Y. Вывод ф.

U=X+Y(1), где х, у - независим. велич., получ. в результате неоднократных изм. величин. Если изм. велич. были определены со случ. ош., то и сумма их будет содерж. ош.

U+∆U=(x+∆x)+(y+∆y) (2).

Вычтем из (2) (1) ∆U=∆x+∆y. При многократных непостедств. изм. каждой велич. получ. многочлен

∆U1=∆x1+∆y1,∆U2=∆x2+∆y2,….,∆Un=∆xn+∆yn.

Возведем в квадрат и сложим почленно [∆U2]=[∆x2]+[∆y2]+2 [∆x∆y]. Отбросим последнее знач. т.к. оно обладает всеми св-ми случ. ош. и при увелич. числа изм. стремится к 0.

[∆U2]=[x2]/n+[y2]/n, m2U=mx2+my2.

СКО суммы двух изм. велич. равна сумме квадратов отдельных аргументов.

m=mx=my, mU= +-m√2, mU=√mx2+my2.