Смекни!
smekni.com

Гидрометеорологическое обеспечение мореплавания (стр. 8 из 9)

Рис. 1 - Зависимость отношения скорости ветра, измеренной на высоте z, к скорости ветра, измеренной на стандартной высоте 10 м, от высоты измерения: 1 - штормовой ветер (более 40 узлов), 2 - слабый и умеренный ветер (менее 15 узлов)

Как правило, скорость ветра, измеренная над сушей (v_c), меньше скорости ветра, измеренной в море (v_m). Различия объясняются неодинаковым коэффициентом шероховатости над сушей и над морем и другими причинами. Только в последние годы были выполнены специализированные синхронные измерения ветра на суше и на море (с судов, автономных буев и буровых платформ), которые позволили обосновать переход от v_c к v_m. Отношение v_м к v_с изменяется от 1,1 до 1,7, а для слабых ветров - до 2,0 и более. Для ориентировочных расчетов можно пользоваться данными рис. 64. Из рисунка видно, что отношение v_м к v_c тем больше, чем меньше скорость ветра. При скоростях ветра 20 узлов и более оно не превышает 1,1.

Данных по соотношению между ветром на море и на суше в зависимости от направления гораздо меньше. Однако можно считать, что наибольшие различия наблюдаются при ветре вдоль берега - отношение v_м к v_c в среднем достигает 1,7, при ветре с моря или с суши это отношение, как правило, не превышает 1,6 и в среднем равно 1,3.

При сопоставлении синхронных наблюдений на суше и на море следует иметь в виду, что в некоторых случаях возможны отклонения от приведенных соотношений и даже их противоположный ход - ветер над сушей больше, чем в море. Такие расхождения могут быть связаны с прохождением фронтов или с бризовыми эффектами. Наиболее четко бризы проявляются при отсутствии сильных ветров. При бризах различие между ветром на море и на суше ночью несколько больше, чем днем (рис. 2).

Рис. 2 - Соотношение между скоростью ветра, измеренной на береговой станции (v_c), и скоростью ветра, измеренной в море (v_м)


Отрезками прямых показаны значения среднего квадратического отклонения данных наблюдений.

Скорость ветра на картах погоды (в соответствии с международным синоптическим кодом КН-01) указывается стрелкой, идущей к центру кружка (кружком обозначается место проведения наблюдений) по направлению ветра. Скорость ветра представляется в виде оперения, наносимого у конца стрелки ветра. Одно большое перо на стрелке соответствует скорости ветра 10 узлов малое - 5 узлов, треугольник - 50 узлов. Если данные о скорости ветра отсутствуют, на конце стрелки ветра вместо оперения наносят крестик. Если данные о направлении ветра отсутствуют, ветер не наносят. При штиле кружок станции обводят другим кружком.

Приземные синоптические карты делятся на карты фактической погоды и прогностические карты. Приземная синоптическая карта фактической погоды является главной при составлении прогноза погоды.

Название "приземная" не означает, что эта карта отражает только свойства атмосферы у поверхности земли, а указывает, что данные, нанесенные на карту, получены путём наблюдений на "наземных" метеорологических станциях.

а) Приземные карты фактической погоды (анализ приземный)

Приземные карты фактической погоды передастся за основные сроки наблюдений: за 3,9,15 и 21 час московского времени или за 0,6,12 и 18 часов гринвичского времени. На этой карте показывается большой комплекс метеорологические элементов в соответствии с международным кодом КН-01, поэтому приземные карты фактической погоды часто называют комплексными картами погоды.

При чтении приземной синоптической карты фактической погоды необходимо иметь в виду, что значения метеорологических элементов и явлений наносятся цифрами или символами (значками) в строго определенном месте относительно центра, за который принимается место пункта наблюдения.

dd - направление ветра у поверхности Земли в десятках градусов по шкале 00-36, изображается стрелкой, идущей к центру кружка по направлению ветра;

ff - скорость ветра в метрах в секунду, изображается в виде оперения у конца стрелки направления ветра под углом к ней примерно 120 градусов и черного треугольника;

dd - направление ветра у поверхности Земли в десятках градусов по шкале 00-36, изображается стрелкой, идущей к центру кружка по направлению ветра;

ff - скорость ветра в метрах в секунду, изображается в виде оперения у конца стрелки направления ветра под углом к ней примерно 120 градусов и черного треугольника;

Направление ветра наносится стрелкой, направленной к центру станции.

Скорость ветра обозначается кругом с перьями на этих рисунках слева направо:

ОПРЕДЕЛЕНИЕ СКОРОСТИ ВЕТРА ПО КАРТЕ ПРИЗЕМНОГО БАРИЧЕСКОГО ПОЛЯ

Скорость ветра над морем может быть рассчитана по формуле для скорости геострофического ветра(1): (1) Ветер, направленный вдоль прямолинейных изобар выше уровня трения, называется геострофическим.

где wо - угловая скорость вращения Земли, р - плотность воздуха, cp - географическая широта и (dp/dn)- горизонтальный барический градиент. Введем числовые значения со = 7,29-10-5 с-1 в миллибарах на градус и р = 1,276*10-3 г/см3, тогда, взяв широты, получим скорость геострофического ветра в метрах в секунду.


Однако практика показала, что удобнее и быстрее скорость геострофического ветра определять с помощью градиентной линейки (рис. 3).

Рис. 3 - Градиентная линейка. Расстояние между изобарами, градусы меридиана

Для этого необходимо выполнить следующие операции:

а) определить барический градиент (dp/dn) измеряя расстояние между соседними изобарами (по нормали к ним) в искомой точке, и выразить его в градусах меридиана;

б) полученное таким образом значение барического градиента находим на оси абсцисс градиентной линейки;

в) из найденной точки восстанавливаем перпендикуляр до пересечения с наклонной линией соответствующей широты места, для которого мы хотим определить скорость геострофического ветра; промежуточные значения широты находим путем интерполяции;

г) из точки пересечения проводим прямую линию, параллельную оси абсцисс, до пересечения с осью ординат, на которой снимаем искомое значение скорости геострофического ветра.

Полученная скорость геострофического ветра будет больше скорости ветра, дующего вблизи поверхности моря (на высоте 10 м). Поэтому для перехода к последнему необходимо полученную скорость геострофического ветра умножить на коэффициент, учитывающий стратификацию приводного слоя атмосферы.

Геострофический ветер - это теоретический ветер, который является результатом полного баланса между силой Кориолиса и барическим градиентом. Такие условия называются геострофическим балансом. Геострофический ветер направлен параллельно изобарам (линиям постоянного атмосферного давления на определённой высоте). В природе такой баланс встречается редко. Реальный ветер почти всегда отклоняется от геострофического за счёт действия других сил (трение о поверхность Земли, центробежная сила). Таким образом реальный ветер будет равен геострофическому если отсутствует трение и изобары являются идеальными прямыми. Несмотря на практическую недостижимость таких условий, рассмотрение ветра как геострофического является хорошим первым приближением для атмосферы вне тропической зоны.

Геострофический баланс в Северном полушарии. Окружностями показаны изобары. Н - область низкого давления, В - область высокого давления

Происхождение

Воздух движется из областей с высоким давлением в область с низким давлением благодаря существованию барического градиента. Однако как только воздух приходит в движение, начинает действовать и сила Кориолиса, которая отклоняет поток вправо в Северном полушарии и влево в Южном полушарии. С увеличением скорости ветра увеличивается и отклонение под влиянием силы Кориолиса. Отклонение увеличивается до тех пор пока сила Кориолиса и сила барического градиента не сбалансируют друг друга, в результате чего ветер движется уже не от области высокого давления в область низкого давления, а вдоль изобары, линии равного давления. Геострофическим балансом объясняется почему системы низкого давления (в частности циклоны) вращаются против часовой стрелки а системы высокого давления (в частности антициклоны) по часовой стрелке в Северном полушарии (и наоборот в Южном полушарии).

Геострофические течения

Многие течения в океане тоже геострофические. Как и многочисленные измерения метеозондов, собирающих информацию об атмосферном давлении на разных высотах в атмосфере, используются для того чтобы определить поле атмосферного давления и вывести геострофический ветер, измерения плотности по глубине в океане используются для вывода геострофических течений. Спутниковые альтиметры также используются для измерения аномали высоты морской поверхности, которая позволяет вести расчёт геострофических течений на поверхности. Геострофическое течение в воде или в воздухе - это внутренняя волна нулевой частоты.

Ограничения геострофического приближения

Эффект трения между воздухом и земной поверхностью нарушает геострофический баланс. Трение замедляет поток, уменьшая эффект от силы Кориолиса. В результате сила барического градиента имеет больший эффект, и воздух всё-таки движется от высокого атмосферного давления к низкому атмосферному давлению, хоть и с большим отклонением. Это объясняет почему ветра в системах высокого давления (антициклонах) расходятся от центра системы, тогда как ветра в системах низкого давления (циклонах) спирально закручиваются к центру системы.