Смекни!
smekni.com

Земная кора (стр. 3 из 5)

Чтобы представить себе механизм этого процесса, мысленно проделаем следующий опыт.

Поместим в термоустойчивую трубку смесь соединений, обладающих различной температурой плавления. При помощи кольцевого нагревателя расплавим узкую зону внизу трубки и затем будем медленно перемещать нагреватель вверх вдоль трубки. При подъеме нагревателя расплавится следующая зона, а нижележащая масса остынет и вновь закристаллизуется. По мере движения нагревателя все вещество в трубке пройдет стадии плавления и последующей кристаллизации. Если эту операцию повторить неоднократно, то исходная смесь закономерно разделится: вверху обособятся более легкоплавкие соединения, а внизу — менее плавкие.

Изложенный принцип «зонной» плавки был использован известным геохимиком А.П. Виноградовым для создания модели образования земной коры. Согласно этой модели, определенные очаги расплава, перемещающиеся в радиальном направлении, обеспечили закономерную дифференциацию вещества мантии. Состав первоначально возникающего расплава не отличался от состава исходного материала. Но многократное повторение этого процесса обусловило разделение вещества, вынос из мании относительно легкоплавких соединений и накопление их на поверхности планеты.

В результате дифференциации исходного вещества происходит закономерное перераспределение химических элементов по оболочкам Земли. Если принять, что состав исходного вещества мантии близок к составу каменных метеоритов, то можно проследить, как менялось содержание важнейших химических элементов в процессе образования земной коры.

В таблице 5 хорошо видно, что выделение легкоплавких соединений из исходного вещества планеты сопровождалось прогрессирующим накоплением кремния, алюминия, кальция, калия, натрия, фтора, хлора. В то же время большая часть железа, магния, серы оставалась в веществе мантии.

Предложены и другие модели, но независимо от тех или иных представлений о механизме массопереноса большая часть ученых разделяет мнение о том, что земная кора образовалась путем выноса из мантии легкоплавких и легколетучих химических соединений.

Таблица 5

Среднее содержание основных химических элементов в главных типах горных пород и в каменных метеоритах, в весовых процентах

(по А.П.Виноградову)

Элементы Каменные метеориты (хондриты) Горные породы верхней мантии (дуниты и др.) Горные породы земной коры
базальты гранитоиды
0SiAlCaКNaFClMgFeS 35,018,01,31,40,0850,70,00280,00714,025,02,0 42,519,00,450,70,030,570,010,00525,99,850,02 43,524,08,766,720,831,940,0370,0054,58,560,03 48,732,37,71,583,342,770,080,0240,562,70,04

Процесс выноса легколетучих и легкоплавких химических соединений весьма сложен. Если образование базальтовой коры как продукта выплавления из вещества мантии не вызывает сомнений, то в процессе образования гранитного слоя еще очень много неясного. Многочисленные факты свидетельствуют, что образование крупных масс гранитов приурочено к определенной стадии развития геосинклиналей, на которой процессы регионального метаморфизма достигают своей наивысшей степени — палингенеза. При этом происходит расплавление метаморфизуемых пород под воздействием не только высоких температур и давления, но также глубинных флюидов, дегазированных из мантии. Образующийся расплав насыщается химическими элементами, поступившими в результате дегазации, состав его становится более сложным по сравнению с выплавляемыми базальтами, изливающимися на океаническом дне из глубинных разломов. Рассмотренный процесс получил название гранитизация. Возможно, что таким путем образовались огромные массы гранитных батолитов.

Активный вынос легколетучих соединений, обусловливающих гранитизацию мощных толщ осадков, происходит не повсеместно на поверхности земного шара, а лишь в определенных структурных элементах земной коры — геосинклиналях. Локализация процессов активного выноса, по-видимому, связана с неравномерным распределением источников энергии, в частности, масс радиоактивных элементов в мантии. Таким образом, континенты, кора которых содержит гранитный слой, можно рассматривать как участки земной коры, в пределах которых особенно активно происходил вынос легколетучих и легкоплавких химических соединений из мантии. На площади распространения океанической коры этот процесс происходил менее активно, о чем свидетельствуют не только меньшая мощность слоя выплавленных базальтов, но и бедность океанических базальтов многими химическими элементами по сравнению с базальтами континентальной коры. По расчетам А.Б. Ронова и А.А. Ярошевского, общая масса вещества, вынесенного из мантии в континентальную кору, составляет 22,37*1018 т, а в океаническую — почти в четыре раза меньше.

Особенно важное значение процесс образования континентальной земной коры имел для перераспределения металлов. Как следует из данных таблицы 6, содержание одних металлов резко возрастает в гранитном слое по сравнению с исходным веществом мантии,

Таблица 6

Перераспределение некоторых редких и рассеянных химических элементов в процессе образования земной коры, в 1-10-3 %

Элементы Каменные метеориты Породы верхней мантии (дунит и др.) Породы земной коры
базальты гранитоиды
Элементы, концентрирующиеся в гранитоидах
ВаZrSnPbU 0,630,10,020,0015 0,130,050,010,0007 30100,150,80,05 83200,320,35
Элементы, концентрирующиеся в базальтах
TiVСuZn 507105 30423 900202013 2304266
Элементы, содержание которых уменьшается в земной коре
NiСоСгHgPt 1350802500,30,2 200202000,0010,02 1604,5900,0090,01 0,80,52,50,008-

а содержание других — уменьшается. В процессе выплавления вещества земной коры в мантии задерживались металлы группы железа — никель, кобальт, хром, отчасти марганец. Поэтому содержание никеля в породах верхних горизонтов Земной коры по сравнению с содержанием в исходном веществе уменьшается в десятки раз, примерно в сто раз уменьшается содержание кобальта и хрома, в тысячу раз платины. В процессе выплавления земной коры уменьшилось также содержание ртути, но это произошло по причине выноса паров этого металла, поступавших в атмосферу и растворявшихся в природных водах.

Металлы, содержание которых в целом увеличивается в земной коре, распределяются в горных породах неодинаково. Выделяется группа металлов, концентрирующихся в гранитном слое континентальной земной коры, обогащенной кремнием, алюминием, щелочами, легколетучими соединениями. Сюда относятся цирконий, ниобий, барий, олово, свинец, уран. Например, концентрация свинца увеличивается в 100 раз, урана — еще более. Другая группа металлов концентрируется в базальтовых породах. В эту группу входят титан, ванадий, медь, цинк.

Одновременно с выплавлением легкоплавких соединений из вещества мантии происходило выделение газов разных веществ. В результате дегазации мантии образовалась основная масса газов и воды, имеющихся на нашей планете. При этом расчеты показывают, что на протяжении геологической истории из мантии вынесено только около 10% содержавшихся в ней каждого газа. Так, например, по данным А.П. Виноградова, содержание воды в мантии составляет 2*1022 кг, а ее общее количество в гидросфере и атмосфере — 1,5*1021 кг. В результате процесса дегазации выносились также возгоняемые соединения тяжелых металлов.

Совершенно особое положение в земной коре занимает самый наружный слой, который некоторые ученые называют осадочной оболочкой Земли. По минералогическому составу он принципиально отличен от двух других слоев коры. В составе осадочной оболочки преобладают не силикаты с разнообразной кристаллохимической структурой, как в гранитном и базальтовом слоях земной коры, а дисперсные силикаты со сложной структурой — глины, составляющие 40% осадочного слоя, карбонаты — 23%. Среди обломочных минералов, сохранившихся при гипергенном преобразовании гранитного слоя, входящих в состав осадочной оболочки и составляющих 19% ее массы, доминирует кварц — наиболее устойчивый к выветриванию эндогенный минерал. Химический состав осадочного слоя обогащен не только Н2O и СO2, но также окисленными формами серы, органическим углеродом, хлором, фтором, азотом и тяжелыми металлами. Все эти соединения и элементы выносятся из мантии путем дегазации, но в процессе гипергенеза и седиментогенеза связываются и аккумулируются в веществе осадочного слоя. Таким образом, на поверхности Земли происходит глубокое преобразование вещества гранитного слоя. Главным фактором этого процесса является суммарный геохимический эффект жизнедеятельности организмов. Это проявляется как в непосредственном участии организмов в осадкообразовании, так и в регулировании условий, определяющих направленность преобразования горных пород гранитного слоя: содержание кислорода и углекислого газа в атмосфере, щелочно-кислотных параметров природных вод, окислительно-восстановительных условий, присутствие органических соединений и др. Установлено, что большая часть массы вещества осадочных пород, образованных на протяжении последних 600 млн. лет, находится в пределах континентальной коры, причем примерно половина этой массы сосредоточена в геосинклиналях. Формирование метаморфических пород древних щитов — главных фрагментов гранитного слоя — также происходило в тектонически-активных структурах. Можно предполагать, что многие особенности гранитного слоя сложно связаны с суммарным геохимическим эффектом жизнедеятельности организмов геологического прошлого. Имея это в виду, В.И. Вернадский назвал гранитный слой земной коры «следами былых биосфер».