Смекни!
smekni.com

Геолого-технологические методы иследования скважин (стр. 3 из 4)

3)Кавернометрия скважин

Кавернометрия – это частный случай вертикальной профилеметрии, когда измеряют изменения по стволу скважины среднего фактического диаметра, под которым подразумевается диаметр круга, эквивалентного по площади поперечному сечению скважины неправильной формы. Кавернометрия является самым распространенным методом измерения диаметра скважины. Она широко используется для определения среднего и фактического диаметра скважины, необходимого при интерпретации результатов ГИС, подготовки к спуску обсадной колонны и приготовлениях к цементированию скважины.

До последнего времени наиболее широко распространены каверномеры с омическими датчиками. В каверномере, рассчитанном на работу с трехжильном кабелем, датчиком служит потенциометр R1.В каверномере, рассчитанном на работу с одножильным бронированным кабелем, применяется мост сопротивлений постоянного тока, одним плечом которого служит переменный резистор R1. В обоих типах каверномеров потенциометром или переменным резистором соответственно управляют измерительные рычаги каверномера. Их среднее перемещение передаётся на ползунок резистора. В обоих случаях диаметр скважины определяют по формуле

dc = dH + C*∆U/I (3.3)

где dH – начальный диаметр скважины, при котором напряжение, снимаемое с резистора R1 или с резистора в измерительной диагонали моста сопротивлений, равно нулю;

С – постоянная каверномера. Величины dHи С определяют в результате калибровки каверномера.

3.4. контроль состояния обсадной колонны

Контроль состояния обсадной колонны осуществляется с помощью индукционного дефектомера ДИ-1. Индукционный дефектометр основан на электромагнитном способе индикации повреждений в обсадочной колонне. При таком способе в трубу помещают зонд, включающий генераторную катушку для возбуждения в колонне вихревых токов и приемную (измерительную) катушку, служащую для измерения индуцированной э.д.с. Однако в данном случае э.д.с. на выходе измерительной катушки зависит не только от внутреннего диаметра dколонны, но и от магнитной проницаемости µ и электропроводности γ материала колонны и толщины её стенок, а также от повреждений колонны (трещин, разрывов и т.п.). Обилие факторов, от которых зависит э.д.с. на выходе измерительной катушки, затрудняет интерпретацию полученной информации.

Если измерять действительную и мнимую составляющие напряжения на выходе измерительной катушки при изменении различных факторов, то можно увидеть, что вектор напряжения, вызванной продольной трещиной в трубе (вектор Тр), образует достаточно большие углы с вектором напряжения, обусловленном влиянием диаметра колонны и её магнитной проницаемости (вектором d, µ) и с вектором напряжения, обязанным изменению электропроводности колонны (вектором γ). Для исключения совместного влияния этих факторов провести скалярное умножение вектора d, µ и вектора γ на единичные векторы, расположенные под углом 90º к указанным векторам. В первом случае э.д.с. на выходе измерительной катушки будет зависеть от величины γ и от наличия трещин. Поскольку величина γ для конкретной колонны меняется в небольших пределах, при регистрации этой э.д.с. будет записываться диаграмма порывов и трещин в колонне. Во втором случае э.д.с. будет зависеть от величин d, µ и наличия трещин. Поскольку величина µ для конкретной колонны меняется в небольших пределах , от трещины в основном фиксируется в первом случае, то при регистрации этой э.д.с. будет записываться диаграмма износа и локальных дефектов обсадной колонны.

В индукционном дефектомере ДИ-1 использованы зонды двух типов: прямой и дифференциальный. Прямой зонд содержит две цилиндрические катушки, намотанные на каркас из электроизоляционного материала, - одну генераторную и одну измерительную. Дифференциальный зонд имеет три

катушки – одну генераторную и две симметрично расположенные по отношению к генераторной и встречно включённые измерительные катушки.

3.5. контроль качества перфорации

Разрешающая способность индукционного дефектомера мала и лимитируется размерами дефектов. Поэтому он не способен отмечать отверстия малого диаметра, получающиеся при перфорации обсадной колонны. Для этой цели используется специальный локатор перфорационных отверстий ЛПО-1.

Исследования показали, что при индикации перфорационных отверстий наиболее чувствительны и помехоустойчивы электромагнитные датчики, выполненные в виде вращающегося постоянного магнита со встречно включенными измерительными катушками на его торцах. Такой датчик достаточно надёжно выделяет отверстия в обсадной колонне диаметром 8 – 10 мм при зазоре между датчиком и колонной до 15 мм.

Локатор перфорационных отверстии ЛПО-1 представляет собой скважинный прибор, в корпусе которого смонтирован электродвигатель с редуктором, обеспечивающий вращение постоянного магнита с катушками на торцах с частотой порядка 500 об/мин в плоскости, перпендикулярной к оси прибора.

При прохождении одной из катушек мимо перфорационного отверстия в обсадной колонне в ней возникает импульс напряжения. Поскольку катушки вращаются сравнительно быстро, а локатор перемещается вдоль обсадной колонны сравнительно медленно (скорость перемещения прибора не более 150 м/ч), каждое перфорационное отверстие выделяется пачкой последовательных импульсов. Эти импульсы усиливаются, детектиризуются, интегрируются и в виде напряжения постоянного тока поступают на регистрирующий прибор. Поэтому интервал перфорации на диаграмме выделяется последовательностью пиков, число которых соответствует числу перфорационных отверстий.

3.6. контроль качества цементирования скважин

После окончания бурения в скважину опускают обсадную колонну (ОК), а пространство между трубами и стенками скважины заливают цементным раствором – цементируют. Целью цементирования является изоляция пластов друг от друга для исключения перетоков воды из водоносных горизонтов в продуктивные пласты. Чаще всего цементируют только нижнюю часть скважины, где расположены эксплуатационные объекты. Контроль цементирования включает две основные задачи: определение высоты (уровня) подъема цемента за ОК и оценку качества изоляции наиболее важных интервалов разреза. Для решения этих задач применяются термометрический, акустический и гамма-гамма-(плоскостной) методы контроля цементирования.

Эти методы контроля цементирования имеют разную физическую основу, поэтому получаемые результаты могут не совпадать. Граница цемент – ПЖ(промывочная жидкость), определяемая по изменению градиента температуры, характеризует уровень подъема цемента независимо от его распределения за ОК, от наличия трещин, каналов и каверн в цементном камне. Поэтому уровень подъема цемента определенный по кривой температуре, лишь косвенно свидетельствует о надежности изоляции. При высокой температуре в скважине, например на больших глубинах, величина температурной аномалии уменьшается, что затрудняет решение задачи.

По кривым акустического контроля ОК выделяется как нормально зацементированная, если цемент сцеплен с ней по большей части её периметра. Наличие гидроводных каналов с угловым размером менее 40-50º не отражается на кривых. Низкое качество цементирования отмечается по кривым акустического контроля независимо от толщины зазора между стенками труб и цемента. Для отнесения интервала в разряд плохо зацементированных достаточен кольцевой зазор в десятые доли миллиметра. Зазоры такой величины иногда возникают за счет загрязненности поверхности труб или за счет химических изменений состава цемента в старых скважинах и обычно не влияют на качество изоляции пластов. Это нужно учитывать при интерпретации. Вместе с тем результаты акустического контроля практически не зависят от толщины цементного кольца, если она превышает 10-15мм, а также от различия плотности цемента и ПЖ, что является существенным преимуществом по сравнению с гамма-гамма-контролем цементирования. Акустический и гамма-гамма-методы контроля дают более полную характеристику качества цементирования по сравнению с термометрией хотя каждый из них имеет свои достоинства и ограничения. В ряде случаев оба вида контроля полезно комплексировать для получения более уверенных данных, особенно при исследовании ответственных объектов.

3.7. Исследования действующих скважин

Промыслово-геофизические исследования являются основным средством контроля за разработкой нефтяных месторождений. В этом плане методами ГИС решаются четыре группы задач:

1) исследование характера насыщения эксплуатационных пластов и процесса вытеснения нефти водой, прослеживание водонефтяного (ВНК) и газожидкостного контроля (ГЖК) контактов в пласте;

2) выделение в эксплуатированном пласте отдающих интервалов, определение профиля притока по колонне и характеристики поступающей из пласта жидкости;

3) оценка надёжности изоляции эксплуатированных пластов, выявление интервалов затрубной циркуляции (перетоков) жидкости из пласта в пласт за ОК;

4) контроль режима эксплуатации скважин – определение газо-нефте-водоразделов в колонне влияния отбора жидкости из скважины, выбор оптимальной глубины спуска насоса и т.д.

Основной объём ГИС при контроле за разработкой выполняется в процессе работы скважины. Измерения при этом проводятся через насосно-компрессорные трубы или через межтрубное пространство. С этой целью применяются специальные приборы малого диаметра в комплексе с дополнительным оборудованием устья скважины для спуска приборов без изменения (или с заданным изменением) гидродинамического режима скважины. Спуск приборов в скважины, эксплуатирующиеся фонтанным или компрессорным способами, а также в нагнетательные скважины производится через специальный лубрикатор с сальниковым уплотнением кабеля по фонтанным или лифтовым трубам. Воронка этих труб должна находиться выше интервала перфорации пласта, подлежащего исследованию. Спуск приборов в насосные скважины, оборудованные насосами, осуществляется через межтрубное пространство по зазору.