Смекни!
smekni.com

Бурильные машины. Проходческие комбайны. Очистные и проходческие комплексы и агрегаты (стр. 7 из 7)

Корончатые органы разрушения также затруднительно использовать на нарезных комбайнах, так как и в этом случае затруднена выгрузка угля из забоя и регулировка органа разрушения по мощности пласта.

Пока только баровые органы разрушения, при всех их недостатках, сами осуществляют выгрузку из призабойного пространства отбитого угля и могут регулироваться по мощности пласта.

В качестве механизма перемещения на нарезном комбайне предпочтительнее применять распорно-шагающий. Механизмы перемещения с гибким тяговым органом в этом случае требуют частых перестановок упорной стойки, так как комбайн работает в лоб забоя, и упорную стойку можно ставить только в пределах длины комбайна. Гусеничные механизмы перемеще¬ния имеют большие габариты и массу.

Нарезные комбайны компоновать желательно так, чтобы они имели дополнительную опору в стенки выработки, что увеличивает устойчивость комбайна. Центральная часть комбайна по его продольной оси должна быть свободна, чтобы можно было крепить выработку над комбайном и проще производить замену резцов на органе разрушения.

Горловский машзавод (Украина) выпускает нарезной комбайн КН-78 для проведения выработок по углю в пластах мощностью 0,7 - 1,7 м с углом падения до 18° при сопротивляемости угля резанию до 300 Н/мм. Комбайн КН-78 (рис. 5.11) состоит из кольцевого бара 7, оснащенного двухшарнирной режуще-погрузочной цепью, гидродомкратов качания органа разрушения 2, лемеха 3, гидроцилиндров подачи комбайна 4, распорных гадростоек 5, электро- и гидрооборудования с пультом управления 6, рамы комбайна с редуктором и электродвигателем 7, скребкового перегружателя боковых опорных лыж 9.

При помощи гидродомкратов 2 кольцевой бар 1 совершает качательное движение между почвой и кровлей, обрабатывая пласт угля на всю мощность и ширину выработки - 4 м. Отбитый уголь с почвы выработки грузится нижней ветвью бара на перегружатель 8.

Рис. 5.11. Нарезной комбайн КН-78

2.6. Тенденции развития горнопроходческих комбайнов

Дальнейшее совершенствование горнопроходческих комбайнов всех типов, очевидно, будет вестись в следующих направлениях:

- расширение области применения комбайнов на более крепкие и абразивные породы за счет совершенствования породоразрушающего инструмента, повышения энерго­вооруженности органа разрушения, изыскания новых нетрадиционных методов раз­рушения горных пород (гидромеханического, вибромеханического, физико- механического и др. способов воздействия на забой);

- применение регулируемого привода органа разрушения;

- совершенствование и внедрение автоматизированных систем регулирования режи­мов разрушения породы и управления комбайна в части контроля за направлением выработки и стабилизации формы поперечного сечения выработки и схемы отра­ботки забоя у стреловых комбайнов;

- оснащение комбайнов средствами технической диагностики состояния наиболее от­ветственных и нагруженных деталей и функциональных узлов;

- расширение применения гидропривода на погрузочных механизмах с нагребающи­ми лапами, передаточных конвейерах, гусеничных механизмах перемещения;

- оснащение комбайнов дополнительным навесным оборудованием для механизации трудоемких ручных операций технологического цикла проведения выработок;

- повышение надежности и долговечности функциональных узлов и всего комбайна в целом.

РАЗДЕЛ3. ОЧИСТНЫЕ И ПРОХОДЧЕСКИЕ КОМПЛЕКСЫ И АГРЕГАТЫ.

В последние десятилетия в угольной промышленности ведущих угледобывающих стран мира происходят процессы концентрации горных работ и интенсификации подземного производства на базе современных очистных механизированных комплексов.

На шахтах Российской Федерации интенсивно отрабатываются пологонаклонные пласты с использованием комплексно-механизированной технологии очистных работ. Удельный вес комплексно-механизированной технологии в РФ на пологонаклонных пластах составляет 99 %. В подавляющем большинстве в очистных комплексах применяется комбайновая выемка. Только в Восточном Донбассе имеются не более десяти лав, оборудованных струговыми установками. Более высоким уровнем совершенствования очистного оборудования станет создание фронтальных очистных агрегатов для добычи угля без постоянного присутствия людей в очистном забое. Отечественные конструктора являются пионерами в создании этого нового вида очистной техники.

Интенсификация очистных работ требует своевременного воспроизводства очистного фронта, а именно увеличения скорости проведения горных подготовительных выработок. Механизация отдельных операций технологического цикла проведения подготовительных выработок не дает должного эффекта. Только на основе комплексной механизации всех технологических операций проходческого цикла можно существенно увеличить скорость проведения подготовительных выработок и производительность труда проходчиков.

Классификация очистных и проходческих комплексов

Технологии очистных работ и проведения подготовительных выработок объединяют аналогичные основные рабочие процессы: отделение от массива транспортабельных кусков полезного ископаемого или породы; погрузку и доставку отделенной от массива горной породы; крепление обнаженных поверхностей и, кроме этого, управление кровлей в очистном забое. Разнообразие горно-геологических условий залегания полезных ископаемых, нестабильность физико-механических свойств горных пород, многооперационность технологических процессов очистных и подготовительных работ определяют все разнообразие схем и средств механизации в очистном или подготовительном забоях.

Системный подход к проектированию комплексов требует объективной классификации и четкой систематизации различных схем и конструктивно разнообразных средств механизации технологических процессов в очистном или подготовительном забоях, что обеспечивает наиболее обобщенный классификационный признак - функциональный. В общем случае в состав любого комплекса может входить три функциональные машины или механизмы:

1) выемочная машина (В), отделяющая от массива транспортабельные куски горной породы. Это может быть очистной или проходческий комбайны, бурильная машина или установка;

2) доставочная машина (Д или П), транспортирующая или производящая погрузку отделенной от массива горной породы на штрековые транспортные средства. Это может быть лавный конвейер или погрузочная машина;

3) крепь (К), обеспечивающая крепление обнаженного пространства и управления кровлей в лаве. Это может быть механизированная крепь или крепеустановщик.

В общей схеме механизации технологических процессов в очистном забое и при проведении подготовительных выработок эти основные функциональные машины могут быть объединены для совместной работы путем наложения на них технологических, кинематических или конструктивных связей.

Технологическая связь (-) заключается в согласовании технологических параметров обособленных машин для их рационального использования. Это низший уровень связей, когда функциональные машины выполняют операции последовательно без совмещения их во времени.

Кинематическая связь (+) подразумевает объединение технологически согласованных функциональных машин с сохранением ими своей самостоятельности и совмещение выполнения основных технологических операций во времени.

Конструктивная связь (•) осуществляется совмещением технологически согласованных функциональных машин в единую конструкцию так, что они теряют свою индивидуальность и представляют собой единый многофункциональный агрегат.

Используя приведенные выше символы функциональных машин и знаки связей между ними можно записать базовые структурные формулы комплексов:

В-Д(П)-К; (8.1)

при наличии кинематических связей

В+Д (П)+К; (8.2)

при наличии конструктивных связей

В • Д (П) • К. (8.3)

Базовой структурной формулой (8.1) описываются отечественные комплекты оборудования, применявшиеся на первых этапах механизации очистных работ в 50-х годах прошлого века (комплект КМ-9, КМ-9Д, комплект с комбайном 2К-52 и др.). Этой же структурной формулой описывается комплект оборудования, применяемый при классической схеме технологического процесса проведения подготовительных выработок буровзрывным способом (КГ-3 и др.).

Структурной формулой (8.2) описываются все современные отечественные и зарубежные очистные механизированные комбайновые комплексы для выемки пологих пластов (КМ 138, КМ 142, КМ 144, КМ 146 и др.). Этой формулой описываются и некоторые проходческие комплексы (Сибирь - 1М и др.).

Формулой (8.3) описываются фронтальные агрегаты для выемки угля из пологих пластов (Ф - 1, Ф - 3) и проходческие агрегаты и щиты (Союз - 19У, КЩ - 5,2Б и др.).

В зависимости от горно-геологических условий ведения горных работ некоторые функциональные машины могут отсутствовать. Так, при выемке угля на крутых пластах и проведении восстающих выработок транспорт отбитой горной породы осуществляется под действием сил гравитации, что и объясняет в схемах механизации технологических процессов в этих условиях отсутствие доставочных или погрузочных машин. Вырождение отдельных функциональных машин (в данном случае доставочных или погрузочных машин) видоизменяет базовые структурные формулы. Очистной механизированный комплекс для выемки крутых пластов КГУ описывается структурной формулой (В - К). Аналогичную структурную формулу имеют комплексы для проходки восстающих выработок КПВ - 1Б, КПН - 1М-+ и др. Структурная формула очистного агрегата для выемки крутых пластов АК - 3 будет иметь вид (В • К).

Функциональные машины комплексов могут иметь и разнородные связи между собой. Так, проходческий комплекс с комбайном избирательного действия имеет структурную формулу (В+Г1 - К), а комплекс с проходческим комбайном бурового действия и буровой установкой для анкерного крепления выработки, кинематически связанной с комбайном, будет иметь формулу (В • П+К).

Таким образом, путем наложения связей и вырождения функциональных машин получается ряд структурных формул, производных от базовых формул, которые определяют все возможные схемы механизации очистных и подготовительных работ в различных горно¬геологических условиях. Структурная систематизация возможных схем и средств механизации технологических процессов в очистном забое выполнена проф. Солодом В. И.. Данная систематизация выделяет двадцать одну структурную формулу, которые делятся на шесть групп. Каждая группа структурных формул показывает качественный уровень развития схем и средств механизации очистных работ. Аналогичная классификация схем и средств механизации технологических процессов проведения подготовительных горных выработок разработана проф. Хазановичем Г. Ш.