Смекни!
smekni.com

Исследование скважин в период освоения и опробования (стр. 4 из 4)

Второй замер температуры производится при снижении уровня жидкости в межтрубное пространство, т.е. при работе компрессора в режиме нагнетания. Знание факта ухода жидкости из скважины в пласт необходимо для интерпретации последующих кривых, полученных в режиме отбора. Кроме того это явление, помимо выявления мест поглощения жидкости (нарушенные колонны, перфорированные пласты) имеет и самостоятельное значение: оно учитывается при определении оптимального времени дренирования скважины, необходимого для полного извлечения из пласта поглощенной в этот период жидкости.

В режиме отбора (притока) жидкости из пласта регистрируют по крайней мере три термограммы. Причем первый замер производят сразу после начала притока, второй - через 1-1,5 часа после первого и следующий через 2-3 часа. При комплексном исследовании [время между замерами может быть время) измерений привело в ряде случаев к массовому завышению скорости записи в ущерб качеству термограммы. 2. При термических исследованиях скважин мгновенная температурная картина в стволе скважины зарегистрирована быть не может: на разных глубинах она измеряется в различное время. Поэтому нестационарность распределения температуры в скважине приводит к искажению термограмм (эффект немгновенности регистрации или временной эффект записи). Исходя из этого, для исключения ложных аномалий на термограммах, скорость записи должна быть постоянной в процессе исследований и намного больше скорости потока (рис.7).

Рис. 7. Влияние скорости движения термометра на регистрируемую термограмму в начальной стадии нагнетания жидкости. 1 - в простаивающей скважине; 2 - в процессе нагнетания жидкости при различных скоростях движения термометра.

3. Завышение скорости движения термометра в случае осваеваемой скважины может приводить к чрезмерной затянутости аномалии дроссельного эффекта в зумпфе скважины из-за тепловой инерции аппаратуры (рис.8).

Рис. 8. К искажению профиля температуры тепловой инерцией аппаратуры.

4. В случае детальных исследований в качестве критерия для выбора скорости записи целесообразно принять величину затянутости ΔZr температурной аномалии в зумпфе. И принимая ΔZr < 0,3 м (по методическим соображениям) получаем для детальных исследований:

Учитывая, что в зумпфе, как правило, находится вода, поправку на увеличение постоянной времени термометра можно не вводить.

5. При исследовании простаивающих скважин в первый период (поисковые исследования), когда распределение температуры в скважине можно характеризовать средним температурным градиентом Гср исходя из чувствительности термометра Δт , допустимую скорость перемещения термометра в скважине можно определить как:

6. Скорость движения термометра не должна превышать указанных значений. При этом должно быть определено действительное значение постоянной времени термометра в скважине, т.к. паспортное значение т0 часто не соответствует действительному.

Примечание 1. Измерения другими методами ГИС, используемыми в комплексе с термометрией осуществляются так же в процессе освоения скважины. При этом: ГК и ЛМ можно регистрировать в простаивающей скважине; термокондуктивный расходомер и методы состава проводят до включения компрессора и при работе скважины в режиме отбора между температурными измерениями; для механического дебитомера возможна (при необходимости) повторная отработка скважины компрессором: барометрия проводится в простаивающей скважине (по стволу) и во всем цикле работы компрессора и скважины между другими геофизическими исследованиями на фиксированной глубине как функция Рзаб (t). Кроме того методы состава (ГГП или ВГД) проводят после отключения компрессора и разрядки (серия замеров) для прослеживания динамического уровня и НВР в стволе скважины.

Примечание 2. Технология и выбор методов исследований могут изменяться на скважине в зависимости от конкретных условий и от результатов предварительной интерпретации первых получаемых материалов ГИС. Принимать такого рода решения на скважине имеет право только начальник геофизической партии непосредственно осуществляющий решение поставленной задачи.