Смекни!
smekni.com

Определение коэффициента продуктивности скважин (стр. 2 из 4)

Фактическая продуктивность несовершенной скважины

Для несовершенной скважины уравнение Дюпюи принимает следующий вид:

где η - Фактическая продуктивность несовершенной скважины. S - Скин-фактор.

Цель исследования скважин заключается в определении ее продуктивности, получении данных о строении и свойствах продуктивных пластов, оценке технического состояния скважин.

Существуют следующие методы исследований скважин и пластов:

1) Гидродинамические

2) Дебитометрические

3) Термодинамические

4) Геофизические

Гидродинамические исследования

Гидродинамические методы подразделяются на:

· Исследование скважин при установившихся отборах (снятие индикаторных диаграмм).

· Исследование скважин при неустановившихся режимах (снятие КВД и КПД).

· Исследование скважин на взаимодействие (гидропрослушивание).

Сущность метода исследования на установившихся режимах

заключается в многократном изменении режима работы скважины и,

после установления каждого режима, регистрации дебита и забойного

давления. Коэффициент продуктивности скважин определяют с

помощью уравнения:

Где Q - Дебит скважины.

К - Коэффициент продуктивности.

Рпл - Пластовое давления.

Рзаб - Забойное давления.

n - Коэффициент, равный 1, когда индикаторная линия прямая; n<1, когда линия выпуклая относительно оси перепада давления; n>1, когда линия

вогнутая относительно оси перепада давления.

При дальнейшей обработки исследований дополнительно определяют коэффициент проницаемости ПЗП, подвижность нефти в ПЗП, гидропроводность ПЗП, а также ряд дополнительных параметров.

Исследование скважин на неустановившихся режимах заключается в прослеживании скорости подъема уровня жидкости в насосной скважине после ее остановки и скорости восстановления забойного давления после остановки фонтанной скважины (снятие КВД).

Таким же образом можно исследовать и нагнетательные скважины, регистрируя скорость падения давления на устье после ее остановки (снятие КПД). По полученным данным определяют коэффициент проницаемости пласта, подвижность нефти в пласте, гидропроводность пласта, пьезопроводность пласта в зоне дренирования скважины, а также скин-эффект (степень загрязнения ПЗП).

Исследование скважин на взаимодействие заключается в

наблюдении за изменениями уровня или давления, происходящими в

одних скважинах (реагирующих) при изменении отбора жидкости в

других соседних скважинах (возмущающих).

По результатам этих исследований определяют те же параметры, что и при исследовании скважин на неустановившихся режимах. Отличие заключается в том, что эти параметры характеризуют область пласта в пределах исследуемых скважин.

Для измерения давления на забое скважин используют абсолютные и дифференциальные (регистрируют приращение отклонения от начального давления) манометры.

По принципу действия скважинные манометры подразделяют на:

· Пружинные, в которых чувствительный элемент – многовитковая, геликсная, трубчатая пружина.

· Пружинно-поршневые, в которых измеряемое давление передается на поршень, соединенный с винтовой цилиндрической пружиной.

· Пневматические, в которых измеряемое давление уравновешивается давлением сжатого газа, заполняющего измерительную камеру.

Дебитометрические исследования

Сущность метода исследований профилей притока и поглощения заключается в измерении расходов жидкостей и газов по толщине пласта.

Скважинные приборы, предназначенные для измерения притока

жидкости и газа (дебита) называются дебитомерами, а для измерения

поглощения (расхода) – расходомерами.

По принципу действия скважинные дистанционные дебитомеры (ДГД) и расходомеры (РГД) бывают: турбинные, пружинно-поплавковые и с заторможенной турбиной на струнной подвеске. Кроме своего основного назначения, скважинные дебитомеры и расходомеры используют и для установления затрубной циркуляции жидкости, не герметичности и мест нарушения эксплуатационной колонны, перетока жидкости между пластами.

Термодинамические исследования

Термодинамические исследования основаны на сопоставлении геотермы и термограммы действующей скважины. Геотерма снимается в простаивающей скважине и дает представление о естественном тепловом поле Земли.

Термограмма фиксирует изменение температуры в стволе скважины.

С помощью данных исследований можно определить интервалы

поглощающих и отдающих пластов, а также использовать полученные

результаты для: определения затрубной циркуляции; перетока

закачиваемой воды и места нарушения колонны; определения высоты

подъема цементного раствора за колоннами после их цементирования.

Геофизические исследования скважин

Геофизические исследования скважин - комплекс физических методов, используемых для изучения горных пород в околоскважинном и межскважинном пространствах, а также для контроля технического состояния скважин. Геофизические исследования скважин делятся на две весьма обширные группы методов - методы каротажа и методы скважинной геофизики. Каротаж, также известный как промысловая или буровая геофизика, предназначен для изучения пород непосредственно примыкающих к стволу скважины (радиус исследования 1-2 м).

Часто термины каротаж и ГИС отождествляются, однако ГИС включает также методы, служащие для изучения межскважинного пространства, которые называют скважинной геофизикой.

Исследования ведутся при помощи геофизического оборудования. При геофизическом исследовании скважин применяются все методы разведочной геофизики.

1.4 Методы увеличения продуктивности скважин

Разработка залежей нефти в нашей стране осуществляется в основном с применением заводнения, которое позволяет увеличить нефтеотдачу пластов почти в 2 ра­за по сравнению с разработкой на естественных режимах.

И тем не менее баланс остаточных запасов на месторождениях, нахо­дящихся в завершающей стадии разработки, остается весьма высоким, составляя в отдельных случаях 50—70%.

Такое состояние с остаточными запасами, которые не могут быть извлечены традиционными методами заводнения, выдвину­ло на передний план задачи ускорения разработки и внедрения новых методов повышения нефтеотдачи пластов.

В настоящее время известно и внедряется большое число методов повышения нефтеотдачи пластов.

Они различаются по методу воздействия на продуктивные пласты, характеру взаимо­действия между нагнетаемым в пласт рабочим агентом и насы­щающей пласт жидкостью, видом вводимой в пласт энергии.

Все методы повышения нефтеотдачи можно разделить на гидро­динамические, физико-химические и тепловые.

Успешность применения методов повышения нефтеотдачи в большой мере зависит от уровня геолого-промысловых исследо­ваний нефтепродуктивного пласта, состояния его разработки и свойств, насыщающих пласт нефти, газа и воды.

Исследования нефтепродуктивного пласта предполагают изучение особенностей его строения с позиции правильной оцен­ки особенностей геометрии пласта с уточнением трассировки тектонических нарушений, линий выклинивания продуктивной части пласта, детальным расчленением объекта разработки на отдельные пласты и пропластки.

Особое внимание следует уде­лять литологической характеристике пород, слагающих продук­тивный пласт. Особенности литологии определяют структуру пористого пространства, что, в свою очередь, влияет на решение использовать тот или иной метод повышения нефтеотдачи.

Для принятия решения использовать методы повышения нефтеотдачи очень

важно изучение геологических характеристик слагаю­щих пласт пород и насыщающих жидкостей, которые при реа­лизации этих методов вступают во взаимодействие с нагнетаемыми в пласт жидкостями, а это может сопровождаться неблагоприятными, для такого применения последствиями.

Так, например, при наличии в продуктивном пласте монтмориллонитовых глин и закачке в них пресной воды, щелочи, растворов поверхностно-активных веществ может происходить набухание глин с лотерей приемистости скважинами нагнетаемых жидко­стей, что делает задачу повышения нефтеотдачи нереализуемой.

Если в продуктивном пласте содержатся сильноминерализован­ные рассолы солей, то при взаимодействии их с закачиваемыми жидкостями возможно выпадение твердых кристаллов в осадок с закупоркой пор пласта.

Применению методов повышения нефтеотдачи должен пред­шествовать тщательный анализ состояния разработки объекта.