Смекни!
smekni.com

Информационные системы в экономике (стр. 8 из 20)

Сетевая или иерархическая модель данных представляет соответствующий метод логической организации базы данных в СУБД.

Иерархическая модель представляет собой древовидную структуру с корневыми сегментами, имеющими физический указатель на другие сегменты. Одно из неудобств этой модели заключается в том, что реальный мир не может быть представлен в виде древовидной структуры с единственным корневым сегментом. Иерархические БД обеспечивали указатели между различными деревьями баз данных, но обработка данных с использованием таких связей была не всегда удобной.

В иерархических моделях непосредственный доступ, как правило, воз­можен только к объекту самого высокого уровня, который не подчинен другим объектам. К другим объектам доступ осуществляется по связям от объекта на вершине модели. В сетевых моделях непосредственный доступ может обеспечиваться к любому объекту независимо от уровня, на котором oн находится в модели. Возможен также доступ по связям от любой точки доступа.

В отличие от иерархической БД в сетевой БД нет необходимости в корневой записи. Однако, как и в иерархических БД, связи поддерживаются с помощью физических указателей.

Сетевые модели данных по сравнению с иерархическими являются более универсальным средством отображения структуры информа­ции для разных предметных областей. Взаимосвязи данных большинства пред­метных областей имеют сетевой характер, что ограничивает использование СУБД с иерархической моделью данных. Сетевые модели позволяют отображать также иерархические взаимосвязи данных. Достоинством сетевых моделей является отсутствие дублирования данных в различных элементах модели. Кроме того, технология работы с сетевыми моделями является удобной для пользователя, так как доступ к данным практически не имеет ограничений и возможен непосредственно к объекту любого уровня. Допустимы всевозможные запросы.

Реляционная модель данных. Концепция реляционной модели баз данных была предложена Э.Ф. Коддом в 1970 г. Как отмечал доктор Кодд, реляционная модель данных обеспечивает ряд возможностей, которые делают управление и использование базы данных относительно легким, предсказуемым и устойчивым по отношению к ошибкам. Наиболее важные характеристики реляционной модели заключены в следующем:

· Модель описывает данные с их естественной структурой, не добавляя каких-либо дополнительных структур, необходимых для машинного представления или для целей реализации.

· Модель обеспечивает математическую основу для интерпретации выводимости, избыточности и непротиворечивости отношений.

· Модель обеспечивает независимость данных от их физического представления, от связей между данными и от соображений реализации, связанных с эффективностью и подобными проблемами.

Реляционные модели данных отличаются от рассмотренных выше сетевых и иерархических простотой структур данных, удобным для пользователя табличным представлением и доступом к данным. Реляционная модель данных является сово­купностью простейших двумерных таблиц - отношений (объектов модели). Связи между двумя логически связанными таблицами в реляционной модели устанавливаются по равенству значений одинаковых атрибутов таблиц-отношений.

Таблица-отношение является универсальным объектом реляционных моделей. Это обеспечивает возможность унификации обработки данных в различных СУБД, поддерживающих реляционную модель. Операции обработки реляцион­ных моделей основаны на использовании универсального аппарата алгебры отно­шений и реляционного исчисления.

Структуры данных реляционной модели. Таблица является основным типом структуры данных (объектом) реляционной модели. Структура таблицы определяется совокупностью столбцов. Данные в пределах одного столбца однородны. В таблице не может быть двух одинаковых строк. Общее число строк не ограничено.

Столбец соответствует некоторому элементу данных — атрибуту, который является простейшей структурой данных. В таблице не могут быть определены множественные элементы, группа или повторяющаяся группа, как в рассмотрен­ных выше сетевых и иерархических моделях. Каждый столбец таблицы должен иметь имя соответствующего элемента данных (атрибута). Один или несколько атрибутов, значения которых однозначно идентифицируют строку таблицы, являются ключом таблицы.

В реляционном подходе к построению баз данных используется терминология теории отношений. Простейшая двумерная таблица определяется как отношение. Столбец таблицы со значениями соответствующего атрибута называется доменом, а строки со значениями разных атрибутов — кортежем.

Совокупность нормализованных отношений (реляционных таблиц), логически взаимосвязанных и отражающих некоторую предметную область, образует реляционною базу данных (РБД). В ходе разработки БД должен быть определен состав логически взаимосвязанных реляционных таблиц и определен состав aтрибутов каждого отношения. Состав атрибутов должен отвечать требованиям нормализации.

Реляционная модель данных зарекомендовала себя как модель, на основе которой могут разрабатываться реальные жизнеспособные приложения. В настоящее время эта модель данных является наиболее популярной.

Объектно-ориентированная модель данных. Реляционная модель данных оказалась эффективной не для всех приложений. Главными среди типов приложений, для которых трудно использовать реляционные базы данных, являются автоматизированное проектирование (Computer Aided design, CAD) и автоматизированная разработка программного обеспечения (Computer Aided Software Engineering, CASE). Разработчики коммерческих продуктов в таких областях, в которых для управления хранением данных используется реляционная СУБД, должны пойти на некоторые изменения данных для того, чтобы подогнать их к структуре строк и столбцов. Как показывает практика, в таких областях, как CAD и CASE более подходит объектно-ориентированная модель данных. В объектно-ориентированных базах данных (ООБД) важнейшее место отводится объектам, на основе которых могут определяться другие объекты благодаря использованию концепции, называемой наследованием. При этом некоторые или все атрибуты (либо свойства) определяющего объекта наследуются каким-то другим объектом, одни атрибуты и свойства добавляются, а другие могут удаляться.

3.3 Типы и классификация компьютерных сетей.

Компьютерные коммуникации служат для дистанционной передачи данных с одного компьютера на другой и являются не только самым новым, но и самым перспективным видом телекоммуникаций. Они обладают рядом неоспоримых преимуществ по сравнению с традиционными средствами общения людей и передачи информации ¾ позволяют не только передавать, получать, но и хранить, и обрабатывать информацию. Проблема передачи информации с одного компьютера на другой возникла практически одновременно с появлением компьютеров. Можно, конечно, передавать информацию с помощью внешних носителей информации – магнитных или компакт – дисков. Но этот способ достаточно медленный и неудобный. Значительно лучше соединить компьютеры кабелем, загрузить специальную программу для передачи информации и, таким образом, получить простейшую компьютерную сеть. Например, для создания прямого соединения компьютеров, работающих под управлением операционной системы Windows, не требуется специального программного и аппаратного обеспечения.

При объединении нескольких компьютеров процесс обмена информацией становится сложнее, однако принципы соединения остаются те же, что и для двух компьютеров. Для подключения компьютеров к линиям связи используются модемы или сетевые карты, если связь осуществляется по специальным выделенным линиям. Кроме того, на каждом компьютере устанавливаются программы для работы в сети. Таким образом: компьютерная сеть ¾ это объединение компьютеров с помощью модемов, линий связи и программ, обеспечивающих обмен информацией. Компьютерные сети позволяют осуществлять новую технологию обработки информации и совместного использования ресурсов – аппаратных, программных и информационных. Новая технология получила название – распределенная обработка данных.

В соответствии с используемыми протоколами компьютерные сети разделяют на локальные и распределенные (глобальные и территориальные). Локальной называется компьютерная сеть, объединяющая компьютеры, расположенные в одном помещении, в одном здании или в соседних зданиях. В локальной сети используют единый комплект протоколов для всех пользователей. Сегодня наиболее распространенными сетевыми операционными системами, обеспечивающими работу пользователей в сети по единому протоколу, являются NetWare фирмы Novell, Windows NT Server фирмы Microsoft и сетевые ОС семейства UNIX. Все большее распространение получает система Linux. Важно отметить, что эта операционная система распространяется свободно, т.е. является free – ware программным обеспечением.

Если же соединенные компьютеры находятся в разных частях города, в разных городах или странах, то такие сети называются распределенными. К распределенной сети могут подключаться не только отдельные компьютеры, но и локальные сети. Распределенные сети мирового масштаба называют глобальными.

Самой известной глобальной сетью является INTERNET. Основой функционирования глобальной сети ИНТЕРНЕТ является базовая семиуровневая эталонная модель взаимосвязи открытых систем ¾ протокол TCP/IP (Transfere Communication Protocol /Internet Protocol).

Основное различие между всеми названными сетями заключается в управлении доступом к информации и в том, как происходит обмен данными. В зависимости от способов управления доступом и обмена данными сети подразделяются по топологии и технологии. Последовательно рассмотрим представление данных в сетях, виды используемых топологий и технологий.