Смекни!
smekni.com

Математические методы в решении экономических задач (стр. 2 из 6)

Области, в которых выполняются соответствующие ограничения в виде неравенств, указываются стрелками, направленными в сторону допустимых значений переменных.

В результате построений получается многоугольник, который определяет пространство решений. Если одно из ограничений имеет знак "=", то ОДР вырождается в отрезок.

В каждой точке, принадлежащей области или границам многоугольника решений, все ограничения выполняются, поэтому все решения, соответствующие этим точкам, являются допустимыми. Пространство решений содержит бесконечное число таких точек, несмотря на это, можно найти оптимальное решение. Для этого необходимо построить в плоскости переменных X1, X2 градиент целевой функции. Определение оптимальной точки зависит от той задачи, которую необходимо решить.

Если в целевой функции определена задача максимизации, то оптимальная точка будет располагаться в направлении увеличения градиента, если задача минимизации – то в направлении уменьшения градиента целевой функции. Для определения оптимальной точки будем перемещать целевую функцию в направлении увеличения (уменьшения) градиента до тех пор, пока она не сместиться в область недопустимых решений.

После нахождения оптимальной точки пространства решений определяют её координаты X1 *, X2 *и значение целевой функции F * в ней. Правильность выбора оптимальной точки можно проверить расчётом целевой функции в вершинах многогранника решений. В ЗЛП область допустимых решений всегда является выпуклым множеством, т.е. таким множеством, что наряду с любыми двумя точками, принадлежащими этому множеству, этому же множеству принадлежит и отрезок, соединяющий эти две точки. Любая функция наискорейшим образом увеличивается в направлении своего градиента.

Далее приступаем к решению задачи:

Занесём необходимые нам данные во вспомогательную таблицу:

Вид сырья Продукция Ограничения по сырью
А₁ А₂
1-й 5 2 750
2-й 4 5 807
3-й 1 7 840
прибыль 30 49

Решение:

Предположим, что будет изготовлено Х₁ единиц изделий вида А₁ и Х₂ единиц - вида А₂. Поскольку производство продукции ограничено имеющимися в распоряжении предприятия сырьем каждого вида и количество изготовляемых изделий не может быть отрицательным, должны выполняться неравенства:


Общая прибыль от реализации Х₁ изделий А₁ и Х₂ изделий вида А₂ составит

F = 30Х₁ +49Х₂

.

Таким образом, мы приходим к следующей математической задаче: среди всех неотрицательных решений данной системы линейных неравенств требуется найти такое, при котором функция F принимает максимальное значение.

Найдем решение сформулированной задачи, используя ее геометрическую интерпретацию. Сначала определим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств и найдем соответствующие прямые:

Эти прямые изображены на рис №1. Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой — нет. Чтобы определить искомую полуплоскость, нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей, и проверить, удовлетворяют ли ее координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка, в противном случае — другая полуплоскость.

Найдем, например, полуплоскость, определяемую неравенствами.


Построим область допустимых решений:

для прямой

С(0;0) => 5·0+2·0=0, а 0≤750, значит прямая стремится к нулю (рис.1)

для прямой


В(0;0) => 4·0+5·0=0, а 0≤807, значит прямая стремится к нулю (рис.1)

для прямой

А(0;0) => 1·0+7·0=0, а 0≤840, значит прямая стремится к нулю (рис.1). Это и показано стрелками.

Пересечение полученных полуплоскостей и определяет многоугольник решений данной задачи.

Как видно из рис №1, многоугольником решений является пятиугольник OABCD. Координаты любой точки, принадлежащей этому пятиугольнику, удовлетворяют данной системе неравенств и условию неотрицательности переменных. Поэтому сформулированная задача будет решена, если мы сможем найти точку, принадлежащую пятиугольнику OABCD, в которой функция F принимает максимальное значение.

Чтобы найти указанную точку, построим вектор ñ =(30; 49) и прямую 30Х1 + 49Х2 = h, где h — некоторая постоянная такая, что прямая 30Х1 + 49Х2 = h имеет общие точки с многоугольником решений. Положим, например, h = 510 и построим прямую 30Х1 + 49Х2 = 510 (рис. №1).

Если теперь взять какую-нибудь точку, принадлежащую построенной прямой и многоугольнику решений, то ее координаты определяют такой план производства изделий А1 и А2, при котором прибыль от их реализации равна 510 руб. Далее, полагая h равным некоторому числу, большему чем 510, мы будем получать различные параллельные прямые. Если они имеют общие точки с многоугольником решений, то эти точки определяют планы производства изделий А1 и А2, при которых прибыль от их реализации превзойдет 510 руб.

Перемещая построенную прямую 30Х1 + 49Х2 = 510 в направлении вектора ñ, видим, что последней общей точкой ее с многоугольником решений задачи служит точка В. Координаты этой точки и определяют план выпуска изделий А1 и А2, при котором прибыль от их реализации является максимальной.

Найдем координаты точки В как точки пересечения прямых

и
. Следовательно, ее координаты удовлетворяют уравнениям этих прямых

Решим эту систему уравнений:

Х1 = 840 – 7Х2, подставим полученное в первое уравнение

=> 3360 – 28Х2 + 5Х2 = 807 => 23Х2 = 2553 =>

Х2 = 111, из этого решения следует, что Х1 = 840 – 7·111 = 63 => Х1 = 63

Следовательно, если предприятие изготовит 63 изделий вида А1 и 111 изделий вида А2, то оно получит максимальную прибыль, равную Fmax = 30·63 + 49·111= 7329 руб.

Решение задачи аналитическим симплекс-методом

Симплексный метод — это метод целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов расчета либо найти оптимальное решение, либо установить, что оптимального решения не существует.

Идея симплексного метода состоит в следующем. Используя систему ограничений, приведенную к общему виду, т. е. к системе т линейных уравнений с п переменными (т < п), находят ее любое базисное решение, по возможности наиболее простое. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то переходят к другому допустимому базисному решению.

Симплексный метод гарантирует, что при этом новом решении линейная форма если и не достигнет оптимума, то приблизится к нему (в случае перехода к вырожденному базисному решению значение линейной формы не изменится). С новым допустимым базисным решением поступают так же, пока не находят решение, которое является оптимальным.

Если первое найденное базисное решение окажется недопустимым, то с помощью симплексного метода осуществляют переход к другим базисным решениям, которые позволяют приблизиться к области допустимых решений, пока на каком-то шаге не получится допустимое выше.

Дадим математическую формулировку задачи. Пусть Х1 и Х2 — количество изделий А1 и А2, запланированных к производству. Так как количество сырья по каждому виду ограничено, то должны выполняться следующие неравенства:

Эта система неравенств и является системой ограничений данной задачи. Целевая функция (линейная форма), выражающая прибыль предприятия, имеет вид

F = 30Х₁ +49Х₂

.

Итак, задача сводится к нахождению максимума функции F = 30Х₁ +49Х₂ при ограничениях: