Смекни!
smekni.com

Сущность и использование транспортных задач (стр. 3 из 4)

Решение:

Обозначим изделие каждого вида соответственно a, b, c, f, g. Тогда на изготовление всей продукции уйдет (1,5a+0,08b+0,06c+0,2f+0,2g) м3 древесины Iвида и (0,2a+0,05b+0,04c+0,2f+0,1g) м3 древесины IIвида. Так как запасы этих ресурсов не превышают 350 и 130 м3 соответственно, то

1,5a+0,08b+0,06c+0,2f+0,2g ≤ 350

0,2a+0,05b+0,04c+0,2f+0,1g ≤ 130

Трудоемкость производства этих изделий равна

(3,3a+0,4b+0,3c+1f+1,2g). Значит,

3,3a+0,4b+0,3c+1f+1,2g≤ 1100

Итак, система ограничений имеет вид:

А прибыль будет выражена функцией

F=13000a+1300b+1200c+4300f+4450g


Чтобы найти решение задачи, воспользуемся MSExcel.

Целевую функцию зададим выражением:

=13000*A2+1300*B2+1200*C2+4300*F2+4450*G2

А систему ограничений так:

=1,5*A2+0,08*B2+0,065*C2+0,2*F2+0,2*G2

=0,2*A2+0,05*B2+0,04*C2+0,2*F2+0,1*G2

=3,3*A2+0,4*B2+0,3*C2+1*F2+1,2*G2

Открыв в меню «Сервис» команду «Поиск решения», заполним открывшееся окно: установим целевую ячейку, равную максимальному значению, определим ячейки-переменные, значения которых искомы, установим систему ограничений по имеющимся запасам сырья и располагаемой трудоемкости.

После этого в окне «Параметры» установим флажок в ячейку «Линейная модель» и выберем кнопку «Выполнить».


В результате решения получаем данные об оптимальном ассортименте продукции:

Переменные
160 0 20 429 114
функция цели: 4456000
349,9 350
130 130
1099,8 1100

Итак, чтобы получить максимальную прибыль 4 456 000 рублей при имеющихся запасах сырья и существующей трудоемкости получаемой продукции, предприятию следует производить 160 единиц товара вида А, 0 – вида В, 20 – вида С, 429 - вида Fи 114 – вида G.

3. ПРИМЕНЕНИЕ ТЕОРИИ ТРАНСПОРТНОЙ ЗАДАЧИ К РАБОТЕ ООО «ДУБРОВЧАНКА+»

3.1 Сущность транспортной задачи

Транспортная задача является представителем класса задач линейного программирования и поэтому обладает всеми качествами линейных оптимизационных задач, но одновременно она имеет и ряд дополнительных полезных свойств, которые позволили разработать специальные методы ее решения. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.

Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них является, как правило, распределение ресурсов, находящихся у mпроизводителей (поставщиков), по nпотребителям этих ресурсов. Различают два типа транспортных задач: но критерию стоимости (план перевозок оптимален, если достигнут минимум затрат на его реализацию) и по критерию времени (план оптимален, если на его реализацию затрачивается минимум времени) [2].

Наиболее часто встречаются следующие задачи, относящиеся к транспортным:

- прикрепление потребителей ресурса к производителям;

- привязка пунктов отправления к пунктам назначения;

- взаимная привязка грузопотоков прямого и обратного направлений;

- отдельные задачи оптимальной загрузки промышленного оборудования;

- оптимальное распределение объемов выпуска промышленной продукции между заводами-изготовителями и др.


где n – количество пунктов отправления,

m – количество пунктов назначения,

аi– запас продукции в пункте отправления Ai(

) [ед. прод.],

bj– спрос на продукцию в пункте назначения Bj(

) [ед. прод.],

cij– тариф (стоимость) перевозки единицы продукции из пункта отправления Aiв пункт назначения Bj[руб. / ед. прод.],

xij- количество продукции, перевозимой из пункта отправления Aiв пункт назначения Bj[ед. прод.],

L(Х) – транспортные расходы на перевозку всей продукции [руб.].

Целевая функция представляет собой общие транспортные расходы на осуществление всех перевозок в целом. Первая группа ограничений указывает, что запас продукции в любом пункте отправления должен быть равен суммарному объему перевозок продукции из этого пункта. Вторая группа ограничений указывает, что суммарные перевозки продукции в некоторый пункт потребления должны полностью удовлетворить спрос на продукцию в этом пункте.

Рассмотрим экономико-математическую модель прикрепления пунктов отправления к пунктам назначения. Имеются mпунктов отправления груза и объемы отправления по каждому пункту a1, a2 ,...,am . Известна потребность в грузах b1, b2 ,...,bn по каждому из nпунктов назначения. Задана матрица стоимостей доставки по каждому варианту cij ,

. Необходимо рассчитать оптимальный план перевозок, т.е. определить, сколько груза должно быть отправлено из каждого i-го пункта отправления (от поставщика) в каждый j-ый пункт назначения (до потребителя) xij с минимальными транспортными издержками.

В общем виде исходные данные представлены в табл. 3.1. Строки транспортной таблицы соответствуют пунктам отправления (в последней клетке каждой строки указан объем запаса продукта ai ), а столбцы — пунктам назначения (последняя клетка каждого столбца содержит значение потребности bj). Все клетки таблицы (кроме тех, которые расположены в нижней строке и правом столбце) содержат информацию о перевозке из i-го пункта в j-й: в правом верхнем углу находится цена перевозки единицы продукта, а в левом нижнем — значение объема перевозимого груза для данных пунктов.

Таблица 3.1

Исходные данные

Транспортная задача называется закрытой, если суммарный объем отправляемых грузов

равен суммарному объему потребности в этих грузах по пунктам назначения
:

(3.1)

Если такого равенства нет (потребности выше запасов или наоборот), запасу называют открытой, т.е.:

(3.2)

Для написания модели необходимо все условия (ограничения) и целевую функцию представить в виде математических уравнении.

Все грузы из i-х пунктов должны быть отправлены, т.е.:

,

(3.3)

Все j-е пункты (потребители) должны быть обеспечены грузами в плановом объеме:

,
(3.4)

Суммарные объемы отправления должны равняться суммарным объемам назначения (3.1). Должно выполняться условие неотрицательности переменных:

,
,

. Перевозки необходимо осуществить с минимальными транспортными издержками (функция цели):

(3.5)

Вместо матрицы стоимостей перевозок (cij) могут задаваться матрицы расстояний. В таком случае в качестве целевой функции рассматривается минимум суммарной транспортной работы. Как видно из выражения (3.1), уравнение баланса является обязательным условием решения транспортной задачи. Поэтому, когда в исходных условиях дана открытая задача, то ее необходимо привести к закрытой форме. В случае, если

- потребности по пунктам назначения превышают запасы пунктов отправления, то вводится фиктивный поставщик с недостающим объемом отправления;

- запасы поставщиков превышают потребности потребителей, то вводится фиктивный потребитель с необходимым объемом потребления.

Варианты, связывающие фиктивные пункты с реальными, имеют нулевые оценки. После введения фиктивных пунктов задача решается как закрытая.

Транспортным задачам присущи следующие особенности:

- распределению подлежат однородные ресурсы;

- условия задачи описываются только уравнениями;

- все переменные выражаются в одинаковых единицах измерения;

- во всех уравнениях коэффициенты при неизвестных равны единице;

- каждая неизвестная встречается только в двух уравнениях системы ограничений.

Транспортные задачи могут решаться симплекс-методом. Однако перечисленные особенности позволяют для транспортных задач применять более простые методы решения.

Опорный план является допустимым решением транспортной задачи и используется в качестве начального базисного решения при нахождении оптимального решения методом потенциалов. Существует три метода нахождения опорных планов: метод северо-западного угла, метод минимального элемента и метод Фогеля. «Качество» опорных планов, полученных этими методами, различается: в общем случае метод Фогеля дает наилучшее решение (зачастую оптимальное), а метод северо-западного угла – наихудшее.