Смекни!
smekni.com

Математические модели потребительского поведения и спроса (стр. 5 из 7)

б) в терминах функции полезности: оптимальный набор

соответствует наибольшему значению u(x) в указанных выше условиях, т.е. является решением задачи:

u(x) = u(x1 ,..., xj ,..., xn) ® max

при условиях

; xj³ 0 (j = 1, ... , n)

При анализе задачи оптимального выбора обычно применяется еще одно важное предположение теории потребления, которое носит название гипотезы ненасыщения потребителя и состоит в том, что для любых двух наборов x и y справедливо соотношение:

если x ³ y, то «x =

y».

Также считается справедливым и более точное соотношение:

если x ³ y и x ¹ y, то «x > y».

Это означает, что для «ненасыщаемого» потребителя всякий набор x, который содержит любого продукта столько же, либо (хотя бы по одной позиции) несколько больше, чем набор y, оказывается более предпочтительным. Предположение о ненасыщении при помощи функции полезности выражается следующим образом:

· если x ³ y, то u(x) ³ u(y).

· если x ³ y и x ¹ y, то u(x) > u(y).

Таким образом, функция полезности является монотонно возрастающей по каждому аргументу xj.

Если функция полезности имеет производные по своим аргументам, то из предположения о ненасыщаемости (и монотонности u(x)) следует, что все первые частные производные функции полезности являются положительными, т.е.:

(j = 1, ..., n)

для любого набора потребительских благ. Величина частной производной:

имеет следующий экономический смысл: она показывает, на сколько увеличится полезность набора, если количество потребляемого блага увеличится на «малую единицу». В связи с этим указанная производная носит название предельной (маргинальной, дифференциальной) полезности.

В экономических исследованиях, как правило, используются некоторые конкретные виды выпуклых функций полезности, причем подбор вида функции и оценка числовых значений параметров производится на основе наблюдений и анализа поведения потребителей. Чаще всего применяются линейная, квадратическая и логарифмическая функция вида:

В пространстве двухэлементных наборов x=(x1, x2) поверхности безразличия (т.е. линии u(x1, x2)=const) обычно называются кривыми безразличия.

Например, для логарифмической функции:

u(x1, x2)= log x1 + log x2

кривые безразличия имеют вид:

logx1 + logx2 = log (x1 x2) = const,

т.е. являются просто гиперболами в положительном ортанте, удовлетворяющими уравнениям:

(x1× x2) = const

Рис. 5.15. Кривые безразличия

На рис. 5.15 C2 > C1, т.е. более высокая кривая безразличия соответствует большему уровню полезности тех наборов, которые составляют кривую безразличия.

Рассмотрим задачу оптимального выбора потребителя для ненасыщаемого потребителя:

Нетрудно заметить, что оптимальный набор

(
,
,
) необходимо должен удовлетворять бюджетному ограничению как точному равенству. В самом деле, если бы оптимальный набор достигался бы при условии:

,

то потребитель мог бы купить на оставшиеся деньги некоторое количество любого блага, и тем самым получить новый набор с большей полезностью. Это означает, что внутренняя точка множества не может быть оптимальным набором.

Таким образом, задача об оптимальном наборе имеет вид:

u(x) = u(x1 ,..., xj ,..., xn) ® max

.

Решение этой задачи на условный экстремум находится при помощи метода множителей. Оптимальный набор определяется путем решения следующей системы из (n+1) уравнения:

относительно (n+1)-го неизвестного, а именно элементов оптимального набора (

,
,
) и множителя Лагранжа
.

Таким образом, при заданной системе цен потребитель должен выбрать такой набор, а котором все предельные полезности пропорциональны ценам. При этом оптимальное значение множителя Лагранжа

часто называют «предельной полезностью денег» и трактуют как прирост максимальной полезности при увеличении дохода I на малую единицу. Заметим, что соотношения оптимальности могут быть представлены в виде:

,

который допускает любопытную интерпретацию: в оптимальной точке величина дополнительной полезности в расчете на одну денежную единицу должна быть одинакова для всех товаров и услуг. Необходимо также отметить, что для некоторых товаров могут быть выполнены соотношения:

,

которые означают, что такие товары сравнительно мало полезны и относительно дороги, а поэтому и не должны быть включены в оптимальный набор потребителя, максимизирующего свою полезность при ограниченном доходе.

Рассмотрим простой пример.

Пусть n=2, функция полезности:

u(x1, x2) = ln x1 + ln x2,

бюджетное ограничение:

p1x1 + p2x2 = I.

Решение задачи оптимального выбора

отсюда:

Используя бюджетное ограничение, имеем:

Как видно из приведенного решения оптимальный выбор потребителя имеет очень естественный вид: количество потребляемого блага прямо пропорционально доходу (I) и обратно пропорционально его цене. Геометрическая интерпретация решения задачи оптимального выбора приведена на рис. 5.14.

В более реалистичных вариантах постановки задачи оптимального выбора при помощи дополнительных условий могут быть учтены ограничения по ассортименту потребляемых товаров и услуг, возможность взаимной замены различных продуктов и т.п.

5 Функции спроса. Коэффициент эластичности

В результате решения задач оптимального выбора оказывается возможным проследить связь между изменением систем цен и доходов группы потребителей, с одной стороны, и спросом этой группы на товары и услуги, с другой; и построить, таким образом, функцию оптимального спроса.

В достаточно общей форме оптимальный спрос выражается при помощи функций вида:

.

В ряде случаев функции оптимального спроса имеют особенно простой вид. Так, если функция полезности имеет логарифмический вид, то оптимальный спрос выражается формулой:

, где
.

В подавляющем большинстве случаев, однако, конкретная форма функции спроса определяется путем статистической обработки результатов специальных наблюдений за доходами и расходами представителей различных социальных групп. В результате изучения функции спроса обычно устанавливаются некоторые классификационные признаки товаров.

Если для некоего товара выполняется условие:

то товар называется нормальным, так как спрос на него снижается по мере увеличения его цены. Однако существуют товары, спрос на которые повышается, невзирая на повышение цены. Эта парадоксальная ситуация возникает тогда, когда при повышении цены на малоэффективный товар (например, картофель) группа потребителей с низким доходом просто не может приобретать более высококалорийный продукт (мясо) и вынуждена компенсировать нехватку калорий усиленной покупкой картофеля.

Товары, для которых имеет место неравенство: