Смекни!
smekni.com

Взаимосвязи экономических перемененых (стр. 3 из 9)

=∑diyi

Причем Ci и di –нек-ые const рассчит-е по выборке, что очевидно из их обозначений.

Оценим теперь вел-ну дисп-ий для коэф-та b1

D(b1)=D(∑Ciyi)=

И т.к. мы знаем значение для дисп-ии разброса случ откл-ий, то м записать

=σ²∑Сi²=

Т.о. мы нали знач-ие дисп-ии на основе дисп-ии теоретич откл-ия ε.

Аналог-но для bo.

Мы м получить, что она равна

D(bo)=D(b1)x²

Т.о. дисп-ия разброса коэф-та прямопропорц-на дисп-ии случ откл-ий => чем > фак-р случ-ти, тем менее точными б оценки и чем > число набл-ий в выборке, тем меньше б эти вел-ны разбросаны.

Кроме того дисп-ии обратнопропорц-ны выбороч дисп-ии объясняющ перем-й S²x, т.е. чем шире область изм-ий объясняющ перем-й, тем точнее б оценки. Но в силу того, что дисп-ии случ теоретич откл-ий σ² нам неиз-ны, мы б их заменять несмещен-й дисп-ей расчет случ откл-ий.

,

где m- число объясняющ переем-х. Для парной регр-ии

.

Тогда стандарт откл-ия

Наз-ся стандартной ошибкой в случ откл-ии. И для того, чтобы рассч-ть дисп-ию разброса коэф-в эмпир-го ур-ия регр-ии, мы б исп-ть формулы

Проверка гипотез относ-но коэф-ов лин ур-ия регр-и.

Эмпир ур-ия регр-ии строятся на основе конеч выборки, извлеч-й из генер сов-ти случ образом, поэтому как б показано коэф-ты ур-ия яв-ся случ вел-нами.

При проведении эк анализа перед иссл-лями оч часто возн-т необ-ть сравнить расчет коэф-ты bo и b1 с нек-ми теоретич коэф-ми βо и β1.

Это срав-ие осущ-ся по схеме проверки гипотез. Предпол-м, провер-ся гипотеза Но:, состоящая в том, что эти вел-ны совпадают.

Но:=b1=β1. Тогда с ней конкурир-ая гипотеза Н1: не совпадает. Как изв-но из тер.вера для проверки таких гипотез рассч-ся t стат-ка Стьюдента, кот-ая при справед-ти гипотезы но имеет распред-ие Стьюдента с числом степеней свободы с парной регр-ей

tb1= (b1-β1)/Sb1

ν=n-2 (n-m-1)

n – объем выборки

m– кол-во объясняющ перем-х

Гипоеза Но б отклонена, если расчет знач-ие по модулю, т.к. нам безрал-но в какую сто-ну произошло откл-ие, окаж-ся > или = вел-ной, найденной из табл Стьюдента.

α-ур-нь знач-ти.

Сч-ся, что в эк задачах α м принимать знач-я 0,05 или 0,01, т.е. мы поверяем гипотезу с вер-тью 95 или 99%.

α/2 берется в связи с тем, что откл-ие м.б. как отриц, так и положит.

При невып-ии этого усл-ия сч-ся, что нет осн-ий для откл-ия гипотезы Но. Однако вел-ны теорет коэф-в как правило неиз-ны, поэтому на начал этапе анализа рассм-ся задача о наличие зав-ти м/у фак-ми х и у. Эта проблема провер-ся на основе гипотезы Но:b1=0 связи нет. С ней конкур-т H1:b1≠0 связь присут-т.

В такой пост-ке гов-т, что провер-ся гипотеза о стат знач-ти коэф-та ур-ия регр-ии.

Если приход-ся принять гипотезу Но, то мы гов-м коэф-т незначим (слишком близок к 0) и соответ-ю объясняющ перем-ую скорее всего из ур-ия следует искл-ть. В против случае коэф-т стат-ки значим. Н указ-т на наличие опр-й лин зав-ти м/у фак-ми.

Тогда расч-ся стат-ка Стьюдента по соотн-ю

и по таблицам Стьюдента находят соответ-но вел-ну
.

Если она ≤ расчет вел-ны, то мы м сказать, что есть осн-ия отклонить гипотезу Но и принять Н1.

Коэф-т отличен от 0. Для парной регр-ии мы не б проверять стат знач-ть bo, т.к. он только гаран-т прохождение линии регр-ии ч/з ср точку выборки.

Сущ-т грубое правило, позвол-ее делать первонач выводы о поведении коэф-в ур-ия при отсут-ии таблиц Стьюдента.

По нему срав-ся вел-на ошибки Sb1, допущенной при нахождении коэф-та с вел-ной этого коэф-та.

А). Если станд ошибка > чем коэф-т, то 0<|tb1|≤1. В этом случае гов-т коэф-т незначим.

Б). Если ошибка не превосх-т половины вел-ны коэф-та, то 1<|tb1|≤2. Гов-т коэф-т слабозначим.

В). Если они соот-ся в диапозоне 2<|tb1|≤3, то коэф-т значим.

Г). Если ошибка <1/3 коэф-та, то 3<|tb1|, коэф-т сильно значим. Это гарантия наличия практ-ки лин зав-ти м/у изучаемыми фак-ми.

Безусл-но на tb1 сущест влияние оказ-т объем выборки n.

Чем >n, тем <погр-ть.

Но при n>10 выписанное грубое правило оценки раб-т практически всегда.

Интервальные оценки коэффициента линейного уравнения регрессии.

Если для эмпир ур-ия выпол-ся предпос-ки Гауса-Маркова, то мы м утвер-ть, что найденные оценки коэф-в б подчин-ся норм закону распред-ия, в соот-ии с кот-м теоретич откл-ие εi распр-ны нормально с пар-ми 0 и σ².

εi~N(0;σ²)

Это усл-ие соглас-ся с усл-ми центр предел теоремы тер.вера, в соот-ии с кот-ой если случ вел-на испыт-т влияние оч большого числа независ-х случ вел-н, влияние каждой из кот-ых на эту случ вел-ну мало, то рассматр-ая случ вел-на имеет распред-ие близкое к нормальному (асимптотически нормальное).

А мы пок-ли, что εi как раз отражают влияние, оказываемое на завис перем-ую фак-ми не включ-ми в модель, кот-ых в эк-ке как правило оч много. Но их влияние на у мало, иначе мы д.б. бы их вкл-ть в модель.

=> если n≥3-1, то у нас вып-ся усл-ия центр пред теоремы. Мы м гов-ть, что εi распр-ны нормально, а это позв-т не только найти наилучшее BLUE оценки для коэф-та, но и построить для них интервальные оценки, что дает опред-ые гарантии проверки точности нахождения коэф-в при смене исход-й выборки.

Причем к-т b1=∑Ciyi

также как и у объясн-я перем-я, являясь лин комб-ей его выбороч вел-н yi при Ci=const, также б иметь норм распред-ие. Причем мы пок-ли уже, что его мат ожидание совп-т с вел-ной теорет к-та, а дисп-ия

=> к-т b1 имеет норм распр-ие с пар-ми β1, D(d1).

Поэтому t стат-ка для коэф-та подчинена распр-ию Стьюдента с доверит-й вер-тью γ=1-α, что соот-т утвер-ию

Тогда мы м записать, что вер-ть

Преобр-м выраж-ие, стоящее в скобках

-tкрSb1≤b1-β1≤tкрSb1

-b1-tкрSb1≤-β1≤tкрSb1-b1

-b1-tкрSb1≤β1≤b1+tкрSb1

Получ соот-ие дает доверит-й инт-л, кот-ый с надеж-тью 1-α покрывает теорет коэф-т β1.

Доверительные интервалы для зависимой переменной.

Одной из осн-х задач эконометр анализа яв-ся прогнозир-ие знач-ий завис перем-ой при опр-ых знач-ях Хпр объясн-й перем-ой.

Здесь возм-н двоякий подход. Либо предсказ-ся усл-ое мат ожидание объясн-й перем-ой при нек-ой объясн-й перем-ой Хпр. М(У/х=Хпр). Либо прогноз-ся нек-ое конкр значение завис перем-ой при извест-м значении объясн-й перем-ой. Тогда гов-т о предсказании конкр вел-ны

1). Предсказание ср значения.

Предпол-м, что мы построили нек эмпир значение парной регр-ии ỹi=b0+b1xi, на основе кот-го хотим предсказать ср вел-ну завис перем-й у при х=Хпр. В данном случае рассчит-ое по урав-ию вел-на ỹпр=b0+b1xпр яв-ся только оценкой для искомого мат ожидания.

Встает вопрос насколько м эта оценка откл-ся от ср мат ожидания для того, чтобы ей м.б. доверять с надеж-тью γ=1-α.

Чтобы построить доверит инт-л, покажем, что случ вел-на ỹпр имеет норм распр-ие с нек-ми конкр переем-ми.

Мы знаем, что ỹпр=b0+b1xпр. Подставим в это ур-ие знач-ие для bo и b1, найденное в виде лин комбинаций выборочных вел-н объясн-й перем-й yi.

Т.е. мы пок-ли, что расчет вел-на яв-ся лин комб-ей нормально распред-й случ вел-ны yi=> она дейст-но имеет норм распред-ие и мы м рассч-ть пар-ры этого распред-ия М(Ỹпр) и D(Ỹпр).

М(Ỹпр)=M(bo+b1Xпр)= М(bo)+XпрM(b1) = βo+Xпрβ1

D(Ỹпр)=D(bo+b1Xпр) =

Т.к. bo вычисл-ся ч/з значение для b1, то они м/у собой зависят и поэтому

= D(bo)+X²прM(b1)=2cov(bo,b1Xпр)***=

Рас-м вел-ну ковариации.

Заменим вел-ну bo ч/з правило ее вычисления из эмпир ур-ия регр-ии, аналог-но поступим со знач-ем βо, записав его знач-ие ч/з теорет ур-ие регр-ии.

Тогда получаем

-

это дисп-ия для значения b1

Мы знаем вел-ну дисп bo и b1. Подставим сюда их значения:

Преобразуем данное выр-ие прибавив и отняв к скобке