Смекни!
smekni.com

Книга S.Gran A Course in Ocean Engineering. Глава Усталость (стр. 6 из 10)

Позже, эта характеристическая функция будет использована для вывода дифференциального уравнения в частных производных для r(h,t).

Теперь, если коэффициент использования после n циклов напряжений обозначен через hn, как в (4.7.38), то коэффициент использования одним периодом позже будет

Согласно гипотезе Палмгрена-Майнера, вклад xi не зависит от предыдущих вкладов, так, что hn и xi статистически независимы. В связи с этим, характеристические функции перемножаются, как это установлено правилом C в главе 2.4.2(iii). Т.к. эти функции уже определны в выражениях (4.7.50) и (4.7.47) соответственно, то характеристической функцией для распределения вероятностей hв момент времени t+T будет

Коэффициент использования hувеличивается скачкообразно и нерегулярно. Следовательно, он не имеет непрерывной скорости изменения, хотя можно вывести ее среднее значение из скорости роста U в (4.7.41). Тем не менее, можно считать, что функция вероятности r(h,t) и характеристическая функция F(s,t) изменяются во времени непрерывно. Т.о., мы можем найти производную характеристической функции по времени на примере изменения через один цикл напряжений T

Левую часть выражения можно заменить на производную (4.7.50) по времени, тогда как в правую часть можно подставить (4.7.52) и (4.7.49).

Если мы рассматриваем F(s,t) в качестве преобразования Лапласа (Laplace) по h, который входит в плотность вероятности r(h,t), то члены вида sjF(s,t) в (4.7.54) будут определены как преобразование Лапласа производных от r(h,t) по h. Формально, его можно вывести с помощью трех последовательных интегрирований по частям правого интеграла из (4.7.50). Подставленное в (4.7.54) оно даст

Первым необходимым условием для всех h и t в этом соотношении является то, что функция плотности вероятности должна удовлетворять дифференциальному уравнению в частных производных

Это уравнение Фоккера-Планка третьего порядка (посмотрите работу /10/), которое включает смещение, рассеяние и асимметрию. Данное уравнение количественно описывает поведение функции вероятности с течением времени. Три коэффициента U, Vи W заданы в (4.7.44) и могут быть вычислены на основе параметров распределения вероятностей и данных по S-N кривых.

Однако, что бы (4.7.56) было полным решением, для граничных членов во второй строке (4.7.55) необходимо, что бы r(h,t) и его первые две производные по h, были равны нулю при h=0 и h=¥. Т.к. функция плотности вероятности (4.7.40) длин отдельных скачков xi может быть равна бесконечности при xi=0, то r(h,t) также может быть первоначально равна бесконечности. По этой причине, одно уравнение Фоккера-Планка (4.7.56) не всегда может достаточно полно описать первый этап развития усталости.

Моменты и приближенные решения. Помимо уравнения Фоккера-Планка (4.7.56), можно получить достаточно хорошие данные по усталостному распределению вероятностей r(h,t) учитывая моменты.

Как установлено выше, мы можем рассматривать длины скачков в сумме (4.7.38) как статистически независимые. Согласно правилу C в параграфе 2.4.2(iv), три первых центральных момента складываются. Т.е. среднее значение

и два первых центральных момента коэффициента использования после nциклов будут

Т.о., среднеквадратическое отклонение, также как и момент третьего порядка коэффициента h, будет расти с увеличением n. Среднеквадратическое отклонение величины hотносительно математического ожидания будет

где n- это относительна дисперсия каждого отдельного скачка, определенная в (4.7.45). Таким же образом, показатель асимметрии коэффициента использования после n циклов

где l- основная асимметрия (4.7.46) в отдельных скачках. Т.о., как относительная дисперсия, так и показатель асимметрии уменьшаются с течением времени и ростом n. В зависимости от значения показателя асимметрии l3, функция вероятности r(h,t) может быть приблизительно найдена с помощью стандартных распределений.

Когда асимметрия становиться меньше двух, т.е. l3<2,0, распределение вероятностей r(h,t) для h может быть представлено экспоненциальным гамма распределением с плотностью (4.2.21). Это имеет место для размахов напряжений распределенных экспоненциально и m=3 при n>96 циклов. Функцию плотности вероятности можно записать

Параметры a, hи u (не путать с параметрами (4.7.1)) можно найти из моментов, как это показано в главе 4.2.2.

Сначала, из уравнения (4.2.32) определяют форму или параметр асимметрии a как решение уравнения

Затем, находят параметр дисперсии h, так же как в (4.2.33), т.е.

Наконец, параметр распространения uвычисляют из (4.2.34)

y-функции – это поли-гамма функции, они представлены в приложении B.

Когда время проходит и асимметрия становится еще меньше, например l3<0,4, для поли-гамма функций можно использовать некоторые асимптотические формулы. Для экспоненциальных распределений размахов напряжений это происходит при n>2400. Параметры экспоненциального гамма распределения a, hи u можно вычислить по более простым формулам

Если асимметрия l3 становится еще меньше, то распределение коэффициентов использования r(h,t) можно представить функцией нормального распределения вероятностей. Плотность вероятности можно записать

Для числа циклов n=9600, в случае экспоненциального распределения размахов напряжений, асимметрия l3=0,2. В большинстве случаев, это пренебрежимо малая величина так, что можно использовать функцию плотности нормального распределения вероятностей. Следовательно, функция нормального распределения вероятностей (4.7.69) достаточна при решении большинства задач по многоцикловой усталости. Но для малоцикловой усталости со случайным нагружением, значение прогнозируемого ресурса может быть полностью скрыто естественной дисперсией.

Модель случайного блуждания. Понятие о естественной дисперсии в усталости может быть, также, получено с помощью в некоторой степени искусственной, но поучительной модели случайного блуждания. Этот способ можно сформулировать следующим образом:

- Коэффициент использования hрастет скачкообразно, эти скачки имеют определенную длину L.

- Для каждого цикла напряжений существует определенная вероятность p того, что hсделает один шаг вперед, а также вероятность (1-p) того, что он останется неизменным.

- Вероятность скачка в одном цикле не зависит от предыдущих скачков.

Данное значение коэффициента использования hопределяют после j скачков, а именно

Однако, эти скачки будут появляться нерегулярно. Вероятность того, что в течении n³j циклов коэффициент использования будет иметь j скачков, задана функцией вероятности биномиального распределения

Для краткой иллюстрации этого метода, рассмотрим особый случай, когда вероятность возрастания h в течение цикла равна 50% и вероятность того, что он останется прежним так же 50%

Это делает вероятность (4.7.71) равной

Для первых циклов, распределение вероятностей показано на рис. 4.7.8, его легко определить по таблице биномиальных коэффициентов.

Рис. 4.7.8 Зависимость функции вероятности коэффициента использования hот числа циклов, для случая p=(1-p)=0,5.

Очевидно, что после нескольких циклов, (дискретное) распределение вероятностей образует блоковое множество определенной ширины. За каждый цикл, вершина этого множества делает шаг вперед, ширина его также увеличивается.