Смекни!
smekni.com

Основные механические характеристики материалов (стр. 2 из 3)

Перед испытанием на поверхность образца наносится ряд рисок, делящих рабочую часть образца на равные части. После того как образец испытан и разорван, обе его части составляются по месту разрыва (рис. 7). Далее, по имеющимся на поверхности рискам от сечения разрыва вправо и влево откладываются отрезки, имевшие до испытания длину 5d (рис. 7). Таким образом определяется сред­нее удлинение на стандартной длине l0 = 10d. В некоторых слу­чаях за l0 принимается длина, равная 5d.


Удлинение при разрыве будет следующим:

Возникающие деформации распределены по длине образца нерав­номерно. Если произвести обмер отрезков, расположенных междусоседними рисками, можно построить эпюру остаточных удлине­ний, показанную на рис. 7. Наибольшее удлинение возникает в месте разрыва. Оно называется обычно истинным удлинением при разрыве.

Диаграмма растяжения, построенная с учетом уменьшения пло­щадиF и местного увеличения деформации, называется истинной диаграммой растяжения (криваяOC'D' на рис. 8).

Рис. 8 D’

Пластичность и хрупкость. Твердость

Способность материала получать большие остаточные деформа­ции, не разрушаясь, носит название пластичности. Свойство пла­стичности имеет решающее значение для таких технологических опе­раций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение d при разрыве. Чем больше d, тем более пластичным считается материал. Противоположным свойству пластичности яв­ляется свойство хрупкости, т. е. способность ма­териала разрушаться без образования заметных остаточных деформаций. Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким мате­риалам относятся чугун, высокоуглеродистая инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хруп­ких материалов не имеет площадки текучести и зоны упрочнения (рис. 9).

Рис. 9

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, испытание на сжатие производится на коротких цилиндрических образцах. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 10. Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, од­нако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается; сам образец вследствие трения на торцахпринимает бочкообразную форму (рис. 11). Довести образец пластического материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 11), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может .

Рис. 10 Рис. 11

Иначе ведут себя при испы­тании на сжатие хрупкие материалы. Диаграмма сжатия этих материалов сохраняет качественные особенности диаграммы растяжения (см. рис. 9). Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием тре­щин по наклонным или продольным плоскостям (рис. 12).

Рис. 12


Сопоставление предела прочности хрупких материалов при рас­тяжении sвр с пределом прочности при сжатии sвр показывает, что эти материалы обладают, как правило, более высокими прочност­ными показателями при сжатии, нежели при растяжении. Величина отношения

для чугунаk колеблется в пределах 0,2 ¸ 0,4. Для керамических материалов k = 0,1 ¸ 0,2.

Для пластичных материалов сопоставление прочностных харак­теристик на растяжение и сжатие ведется по пределу текучести (sтр и sтс).Принято считать, что sтр»sтс.

Существуют материалы, способные воспринимать при растяже­нии большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые металлы, например магний. Деление материалов на пластичные и хрупкие яв­ляется условным не только потому, что между теми и другими не существует резкого перехода в показателе d. В зависимости от условий испытания многие хрупкие материалы способны вести себя как пластичные, а пла­стичные — как хрупкие.

Очень большое влияние на проявление свойств пластичности и хрупкости оказывает время нагружения и температурное воздей­ствие. При быстром нагружении более резко проявляется свойство хрупкости, а при длительном воздействии нагрузок — свойство пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки при нормальной температуре получать оста­точные деформации. Пластичные же материалы, такие, как мало­углеродистая сталь, под воздействием резкой ударной нагрузки проявляют хрупкие свойства.

Одной из основных технологических операций, позволяющих из­менять в нужном направлении свойства материала, является термо­обработка.Известно, например, что закалка резко повышает прочностные характеристики стали и одновременно снижает ее пластические свойства. Для большинства широко применяемых в машиностроении материалов хорошо из­вестны те режимы термообработки, которые обеспечивают получе­ние необходимых механических характеристик материала.

Испытание образцов на растяжение и сжатие дает объективную оценку свойств материала. В производстве, однако, для оператив­ного контроля над качеством изготовляемых деталей этот метод испытания представляет в ряде случаев значительные неудобства. На­пример, при помощи испытания на растяжение и сжатие трудно контролировать правильность термообработки готовых изделий. Поэтому на практике большей частью прибегают к сравнитель­ной оценке свойств материала при помощи пробы на твердость.

Под твердостью понимается способность материала противодей­ствовать механическому проникновению в него посторонних тел. По­нятно, что такое определение твердости повторяет, по существу, опре­деление свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, со­провождающиеся при дальнейшем увеличении сил местным разру­шением. Поэтому показатель твердости связан с показателями проч­ности и пластичности и зависит от конкретных условий ведения, ис­пытания.

Наиболее широкое распространение получили пробы по Бринелю и по Роквеллу. В первом случае в поверхность исследуемой детали вдавливается стальной шарик диаметром 10 мм, во втором — алмазный острый наконечник. По обмеру полученного отпечатка судят о твердости материала. Испытательная лаборатория обычно располагает составленной путем экспериментов переводной табли­цей, при помощи которой можно приближенно по показателю твер­дости определить предел прочности материала. Таким образом, в результате пробы на твердость удается определить прочностные показатели материала, не разрушая детали.

Влияние температуры и фактора времени на механические характеристики материала

Все сказанное выше о свойствах материалов относилось к испы­таниям в так называемых нормальных условиях, но диапазон температур, в пределах которого реально работают кон­струкционные материалы, выходит далеко за рамки указанных нор­мальных условий. Есть конструкции, где материал находится под действием чрезвычайно высоких температур, как, например, в стен­ках камер воздушно-реактивных и ракетных двигателей. Имеются конструкции, где, напротив, рабочие температуры оказываются низ­кими. Это—элементы холодильных установок и резервуары, содер­жащие жидкие газы.

В широких пределах изменяются также и скорости нагружения, и время действия внешних сил. Существуют нагрузки, весьма мед­ленно меняющиеся и быстро меняющиеся. Есть нагрузки, действую­щие годами, а есть такие, время действия которых исчисляется миллионными долями секунды. Понятно, что и зависимости от указанных обстоятельств механи­ческие свойства материалом будут проявляться по-разному. Обобщающий анализ свойств материала с учетом температуры и времени оказывается очень сложным и не укладывается и простые экспериментально полученные кривые, подобные диаграммам растя­жения. Функциональная зависимость между четырьмя параметрами s, e, температурой и временемt

f(s,e,, t)=0

не является однозначной и содержит в сложном виде дифференциальные и интегральные соотношения входящих в нее величин. Так как в общем виде аналитическое или графическое описание указанной функции дать не удается, то влияние температуры и фактора времени рассматривается в настоящее время применительно к частным классам задач. Деление на классы производится и основном по типу действующих внешних сил.Различают медленно изме­няющиеся, быстро и весьма быстро изменяющиеся нагрузки.

Основными являются медленно изменяющиеся, или статические нагрузки. Скорость изме­нения этих нагрузок во времени настолько мала, что кинетическая энергия, которую получают перемещающиеся частицы деформируемого тела, составляет ничтожно малую долю от работы внешних сил. Иначе говоря, работа внешних сил преобразуется только в упругую потенциальную энергию, а также в необратимую тепловую энергию, связанную с пластическими деформациями тела. Испытание материа­лов в так называемых нормальных условиях происходит под дейст­вием статических нагрузок