Смекни!
smekni.com

Принцип Максимума Понтрягина (стр. 3 из 4)

Добавим к этому уравнению граничные условия

и решим его. Составим характеристическое уравнение к2 - (а2+1) =0, к1,2=+(-)

Найдем С1 и С2.

С2=-с2е

. Тогда

Используя граничные условия найдем С2

Таким образом, определено оптимальное решение

Примеры применения принципа максимума.

1. Простейшая задача оптимального быстродействия.

Пусть точка движется по прямой в соответствии с законом

(3.1)

где х - координата. Требуется найти управление и, переводящее точку из начального положения в начало координат за минимальное время Т (задача оптимального быстродействия). При этом скорость точки в конце траектории должна быть нулевой, а управление - удовлетворять условию

.

Применим к сформулированной задаче принцип максимума Понтрягина . Введем фазовые переменные

. Тогда движение управляемого объекта описывается системой двух дифференциальных уравнений первого порядка:

(3.2)

Начальное положение

при t0=0 и конечное положение (0, 0) фиксированы, а конечный момент времени Т не фиксирован.

В обозначениях п.п. 1, 2 в данной задаче U ==[-1, 1], f0=1, Ф=0, а функция Гамильтона имеет вид

Общее решение сопряженной системы

легко выписывается в явном виде

где С, D - постоянные.

Очевидно, что максимум функции Н по и

U достигается при

Таким образом, оптимальное управление и может принимать лишь два значения +1 .

2.Определить управление u(t) , которое дает минимум интегралу

, в процессе, описываемом уравнением
(1).
Решение.
Введем дополнительную переменную

(2)

Для этой переменной имеем дифференциальное уравнение

(
(3)

с начальными условиями, получаемыми из (2), т.е. х2(0)=0. Минимизирующий функционал, используя (2), можно записать в виде I[T]=x2(T).

Построим функцию Гамильтона

Запишем сопряженную систему

(3)

Запишем

Y1(Т)=0 (т.к. с1=0)

Y2(Т)=-1

Из

поэтому Y2(е)=-1. Теперь функция Гамильтона запишется в виде H=-aY1x1+Y1u-0,5x12-0,5u2 .

По принципу максимума функция Н при фиксированных х1 и Y1 достигает максимума по u :

,
, откуда
.

Осталось решить систему уравнений (2) и (3) при условии

, Y2(Т)=-1,

,
с граничными условиями

Сведем данную систему к одному уравнению относительно U.

Добавим к этому уравнению граничные условия

и решим его. Составим характеристическое уравнение к2 - (а2+1) =0, к1,2=+(-)

Найдем С1 и С2.

С2=-с2е

. Тогда

Используя граничные условия найдем С2

Таким образом, определено оптимальное решение

О методах решения задач оптимального управления

Убедимся вначале, что необходимые условия оптимальности в форме принципа максимума дают, вообще говоря, достаточную информацию для решения задачи оптимального управления (2.1), (2.2).

Условие максимума (2.4) позволяет, в принципе, найти управление и как функцию параметров х, t,

(2.7)

Рассмотрим систему дифференциальных уравнений

(2.8)

объединяющюю систему уравнений движения объекта и сопряженную систему.

Как известно, общее решение системы (2.8), состоящей из 2n обыкновенных дифференциальных уравнений первого порядка, зависит от 2п параметров. Кроме того, система необходимых условий оптимальности содержит т параметров

и параметр y0. Таким образом, общее число неизвестных равно 2n+m+1.

Для их определения мы имеем 2п условий (2.5), (2.6) и т условий (2.2). Еще одно условие определяется из следующих соображений.

Легко понять, что, в силу линейности функции Н по переменным принцип максимума Понтрягина определяет вектор (

) с точностью до положительного постоянного множителя. Поэтому если в конкретной задаче удается показать, что
, то полагают обычно
== - 1. В противном случае накладывают какое-либо условие нормировки, например,

Таким образом, общее число условий равно 2n+m+1 и совпадает с числом неизвестных параметров, что, в принципе, позволяет определить эти параметры. Изложенные соображения дают возможность в простейших случаях решить задачу оптимального управления в явном виде.

Опишем численный метод, основанный на тех же соображениях. Для этого рассмотрим краевую задачу для системы дифференциальных уравнений (2.8) с краевыми условиями (2.5), (2.6), а также выписанными на основе (2.2) краевыми условиями

(2.9)

Эта задача называется краевой задачей принципа максимума.