Смекни!
smekni.com

Судовые дымовые трубы (стр. 2 из 3)

Например, на рис 5, а,б показаны два однотипных пассажирских судна – «Спирит оф Лондон» и «Саутворд». На первом из них высокая вертикальная труба, возвышаясь над надстройкой, совместно с мачтой создает эффект устремленности вверх, компенсируя недостаток вертикальной динамики, из-за которого суда с механической установкой менее стройны и легки, чем суда с устремленными в небо парусами. Большие размеры трубы подчеркивают мощь энергетической установки. Горизонтальная динамика силуэта первого судна выражена в меньшей степени, что в общем соответствует его реальным возможностям. На втором судне две наклонные трубы напоминают хвостовую часть авиалайнера, придают композиции островыраженную горизонтальную динамику.

Среди различных композиционных решений сочетание дымовой трубы с надстройкой как наиболее характерные выделяют следующие:

сравнительно невысокая дымовая труба грузового теплохода как бы вырастает из общей массы надстройки, врезаясь в кормовую часть ее верхних ярусов (рис 5);

дымовая труба грузового теплохода отделена от ходового мостика, сдвинута в корму (рис 7);

высокая дымовая труба (или две симметрично установленные дымовые трубы) грузового паротурбохода смещены в корму от жилого блока надстройки;

массивная дымовая труба возвышается над развитой надстройкой, обычно эта труба смещена в корму от миделя;

две дымовые трубы, расположенные симметрично относительно диаметральной плоскости судна, возвышается над протяженной надстройкой, кормовой ее части (рис 5,б).

Попытка внедрения тяго-дутьевых машин в систему дымоотвода судна.

До недавнего времени область применения дутьевых машин ограничивалась давлением 300-400 кгс\м2 и производительностью 150-300 тыс. м3\ч. В последнее время появилась потребность в дутьевых машинах, обеспечивающих производительность до 1,8-2,0 млн. м3\ч.

Внедрение в энергетику мощных блоков с котлами, работающими с наддувом, требует замены низконапорных вентиляторов и дымососов высоконапорными вентиляторами, обеспечивающими повышение давления воздуха до 1600-1800 кгс\м2 при весьма большой производительности. Появилась необходимость в дутьевых машинах, отличающихся от ранее применявшихся вентиляторов и дымососов значительно более высоким напором и весьма большой производительностью, т.е. высоконапорных дутьевых машин большой производительности. Эта группа машин представляет собой разновидность компрессорных машин, имеющих некоторые специфические особенности, несколько отличающие ее как от применявшихся до последнего времени тяго-дутьевых машин, так и от собственно компрессоров и нагнетателей.

Значительно более высокие напоры по сравнению с обычными вентиляторами и дымососами требуют принципиального изменения подхода к вопросам расчета и проектирования. Упрощенные методы проектирования, базирующиеся на допущении о несжимаемости рабочей среды, которые применяются в вентиляторостроении, неприменимы к высоконапорным дутьевым машинам. Здесь так же, как в компрессоростроении кроме аэродинамических явлений должны быть учтены термодинамические процессы. Кроме того, к машинам рассматриваемой группы предъявляется ряд дополнительных требований. Необходимость широкого диапазона изменения нагрузок существенно усложняет условия регулирования. В связи с необходимостью учета сжимаемости газа в машине несколько усложняются условия применения методов моделирования в процессе исследования и конструирования этих машин.

В отличие от собственно компрессоров и нагнетателей, основное назначение которых заключается в создании значительных давлений, машины рассматриваемой группы предназначаются для перемещения больших масс газа при напорах, в большинстве случаев достаточных лишь для преодоления сопротивления коммуникации. Термин «высоконапорные», присваиваемый машинам этой группы, имеет смысл в сравнении с обычными тяго-дутьевыми машинами (по сравнению с компрессорами и нагнетателями эти машины являются низконапорными).

В конструктивном и технологическом отношениях рассматриваемая группа машин весьма близка к вентиляторам. Работа над созданием высоконапорных дутьевых машин в России сконцентрирована в основном в конструкторских коллективах, занимающихся общим вентиляторостроением. К сожалению, система дымоотсоса с помощью использования дутьевых машин не получила одобрения иженеров-кораблестроителей и осталась всего лишь проектным предложением.

МНЕНИЕ. Капитан Арсений Галанин о дымовых трубах.

«Впрочем, сейчас трубы дымят редко даже на моторных судах. Пароходов на морях почти не осталось, а теплоходы, дизель-электроходы и прочие осовремененные "ходы" сжигают в своих машинах нефть или газ. От такого топлива дыма не много, громадные трубы там не нужны. Все чаще можно видеть лайнеры, сухогрузы и другие моторные суда без привычных для глаза труб. Это - самые современные.

Но многие корабельные архитекторы говорят, что морскому судну без трубы никак нельзя. Некрасиво. Нарушаются, мол, давние традиции. И устраивают в великанских трубах все, что может придти в голову: хозяйственные помещения, ангары для вертолетов и даже рестораны.

Дело еще и в том, что на корабельных трубах с давних пор принято изображать эмблемы судовых компаний. А их в мире великое множество и каждая хочет нести свой знак на видном месте. Лучше, чем на широкой и высокой трубе, такого места не сыскать.

И чего только на этих трубах не бывает! Громадные разноцветные буквы и цифры, всякие символические знаки, птицы, звери, рыцарские гербы, звезды, драконы...

Один мой знакомый капитан собирал коллекцию таких "трубных" эмблем. У него был толстый альбом с рисунками, фотографиями и вырезками из морских журналов. Начнешь разглядывать — не оторвешься...»

Сварка в изготовлении судовых дымовых труб.

При изготовлении дымовой трубы и ее установке никак нельзя обойтись без сварки. Стальная конструкция такого рода должна быть очень прочной, и, поэтому, в судостроении применяют несколько видов сварки:

Сварка – экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый в судостроении, в частности для изготовления дымовых труб.

Физическая сущность процесса сварки заключается в образовании прочных связей между атомами и молекулами на соединяемых поверхностях заготовок. Для образования соединений необходимо выполнение следующих условий: освобождение свариваемых поверхностей от загрязнений, оксидов и адсорбированных на них инородных атомов; энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом; сближение свариваемых поверхностей на расстояния, сопоставимые с межатомным расстоянием в свариваемых заготовках.

В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса: термический, термомеханический и механический.

К термическому классу относятся виды сварки, осуществляемые плавлением с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.).

К термомеханическому классу относятся виды сварки, осуществляемые с использованием тепловой энергии и давления (контактная, диффузионная и др.).

К механическому классу относятся виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением, холодная и др.).

Свариваемость – свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия.

Контактная сварка относится к видам сварки с кратковременным нагревом места соединения без оплавления или с оплавлением и осадкой разогретых заготовок. Характерная особенность этих процессов – пластическая деформация, в ходе которой формируется сварное соединение.

Место соединения разогревается проходящим по металлу электрическим током, причем максимальное количество теплоты выделяется в месте сварочного контакта.

На поверхности свариваемого металла имеются пленки оксидов и загрязнения с малой электропроводимостью, которые также увеличивают электросопротивление контакта. В результате в точках контакта металл нагревается до термопластического состояния или до оплавления. При непрерывном сдавливании нагретых заготовок образуются новые точки соприкосновения, пока не произойдет полное сближение до межатомных расстояний, т. е. сварка поверхностей.

Контактную сварку классифицируют по типу сварного соединения, определяющего вид сварочной машины, и по роду тока, питающего сварочный трансформатор. По типу сварного соединения различают сварку стыковую, точечную, шовную.

Стыковая сварка – разновидность контактной сварки, при которой заготовки свариваются по всей поверхности соприкосновения. Свариваемые заготовки закрепляют в зажимах стыковой машины. Зажим 1 установлен на подвижной плите, перемещающийся в направляющих, зажим 2 укреплен на неподвижной плите. Сварочный трансформатор соединен с плитами гибкими шинами и питается от сети через включающее устройство. Плиты перемещаются, и заготовки сжимаются под действием усилия, развиваемого механизмом осадки.

Стыковую сварку с разогревом стыка до пластического состояния и последующей осадкой называют – сваркой оплавлением.

Сварка оплавлением имеет преимущества перед сваркой сопротивлением. В процессе оплавления выравниваются все неровности стыка, а оксиды и загрязнения удаляются, поэтому не требуются особой подготовки места соединения. Можно сваривать заготовки с сечением, разнородные металлы (быстрорежущую и углеродистую стали, медь и алюминий и т.д.).