Смекни!
smekni.com

“Космические технологии (научно-технические, экологические и экономические аспекты)”. (стр. 3 из 6)

Хоть размеры станции и большие – длина около 25 м, масса – почти 25 т, объем герметизированных отсеков 100 м3, но тесновато все-таки. Слишком много оборудования приходится здесь размещать. Есть возможность создать более удобные условия для жизни и работы космонавтов на орбите – используют специализированные модули с научной аппаратурой, которые пристыковываются к станции. Станция имеет несколько стыковочных узлов, к которым, как к причалам, подходят транспортные корабли, доставляющие на орбитальную станцию экспедиции посещения, дополнительные грузы, оборудование. В космосе постоянно идет строительство. В будущем орбитальные станции появятся не только в окрестностях Земли, но и Луны, Марса, Венеры. Создавать поселения для космонавтов вместе с инженерами когда-нибудь будут и дизайнеры, и архитекторы. Человечеству, нашедшему дорогу в космос, предстоит ее прокладывать дальше и обживать нашу Солнечную систему.

VI. Челноки в космосе.

Крылатый орбитальный корабль многоразового использования называют челноком. Он предназначен для выведения на орбиту вокруг Земли различных космических аппаратов, для доставки элементов межпланетных комплексов и для сборки на орбите крупногабаритных сооружений (радиотелескопов, антенн, солнечных батарей т. д.). Возвращаемый с орбиты на Землю корабль-челнок приносит с собой неисправные или отслужившие свой срок спутники, грузы, оборудование. Выполняя рейсы по маршруту Земля – космос – Земля, многоразовый корабль дает значительную экономию средств, так как космические аппараты очень дороги и, как правило, по стоимости изготовления дороже средств выведения, т. е. ракет-носителей. Поэтому выгодно продлевать срок службы космических аппаратов за счет их обслуживания на орбите или возращения на Землю с целью восстановления и ремонта. Первые многоразовые системы: американский “Спейс Шаттл” и отечественный “Энергия – Буран”. Двухступенчатая ракета-носитель выводит на орбиту возвращаемый корабль, похожий внешне на самолет, который и садится “по-самолетному” на трехопорное выпускающееся шасси. Американский космический челнок “Спейс Шаттл” совершил первый полет в 1981 году. Выполнили свои задачи орбитальные корабли “Колумбия”, “Дискавери”, “Индевор”, “Атлантис”. “Челленджер” известен своей печальной судьбой. 28 января 1986 года все человечество содрогнулось, наблюдая по телевидению взрыв уходящего в небо корабля, он потерпел катастрофу при старте через 75 секунд после запуска. Экипаж, состоявший из 7 астронавтов, погиб. Шагнули в бессмертие молодые, здоровые, красивые, сильные люди. Среди них женщина-астронавт Криста Маколифф, учительница, которая собиралась вести урок из космоса, рассказать детям Америки о том, как прекрасна и как мала наша Земля, как хрупко еще ее существование, как необходим ей мир. Полеты “Шаттла” возобновились в сентябре 1988 года. Это корабли-гиганты: 56 м высота в стартовом положении, масса на старте 2000 т, может нести полезный груз 30 т на орбиту и 15 т при возвращении на Землю. Экипаж до 7 человек может быть в полете 30 суток. Но “Буран” при немного меньших размерах и массе способен нести на орбиту и с орбиты такой же массы полезные грузы. 15 мая 1987 года состоялся запуск мощной ракеты-носителя “Энергия”, а 15 ноября 1988 года – первый испытательный полет орбитального корабля многоразового использования “Буран”. На космодроме Байконур для осуществления посадки “Бурана” был создан специальный аэродром с уникальной посадочной полосой твердого покрытия длиной 5 км и шириной 80 м. транспортная система “Энергия – Буран” имеет много важных и очень интересных перспектив.

VII. Техника космических исследований.

4 октября 1957 г. Советский Союз осуществил запуск первого искусственного спутника Земли. Устройство, сделанное руками человека, впервые было выведено в космос. С тех пор исследование Вселенной стало одной из основных задач космической техники. К этой технике относят, во-первых, ракеты-носители, доставляющие научные приборы в околоземное и космическое пространство. Сегодня с их помощью выводят на орбиту спутники и межпланетные лаборатории массой в десятки и сотни тонн. Во-вторых, мощнейшую вычислительную аппаратуру, позволяющую рассчитывать траектории полета к планетам Солнечной системы и режимы посадки на них. В-третьих, сами научные приборы, способные безотказно работать в условиях вакуума, космического холода, в потоках ионизирующего излучения. В-четвертых, служебные системы и агрегаты, которыми оснащаются космические станции.

Космические исследования обходятся недешево. Например, орбитальный телескоп диаметром 1 м стоит в сто раз дороже наземного. Создание космического телескопа “Хаббл” с зеркалом диаметром 2,4 м обошлось американцам более чем в 6 млрд долларов. Но на эти траты приходится идти. Научная аппаратура сегодня приносит не менее половины всей астрофизической информации, поступающей в распоряжение ученых.

Главная причина, заставляющая выводить научную аппаратуру в космос, – влияние земной атмосферы. В ней распадаются заряженные частицы, прилетающие из глубин Вселенной и от Солнца, рассеиваются и поглощаются излучения. Атмосфера никогда не бывает спокойной: воздух дрожит, размывая изображения звезд в телескопах. Приборы в космосе не испытывают воздействия атмосферы и поэтому позволяют получить гораздо больше научной информации, чем наземные.

Но существуют задачи, которые в принципе невозможно решить без космической техники. Это непосредственное изучение атмосферы планет Солнечной системы и их поверхности, исследование межпланетного пространства.

Запуски искусственных спутников и межпланетных лабораторий продолжается. Техника космических исследований становится совершеннее, и с ее помощью мы все больше узнаем о Солнечной системе, о Галактике, о Вселенной.

Первой орбитальной станции стал советский “Салют” (до запуска аппарат именовался ДОС или “Заря”), стартовавший 19 апреля 1971 г. и работавший в пилотируемом режиме с 7 по 30 июня 1971 г. До 1986 г. на околоземной орбите отработали семь “Салютов” (позднее выяснилось, что три из них значительно отличались по конструкции от других, строились в военных целях и назывались “Алмазами”).

В 1973-1974 гг. в космосе функционировала американская орбитальная станция “Скайлэб” (“Небесная лаборатория”). При ее создании в качестве герметичного корпуса использовалась третья ступень лунной ракеты “Сатурн-5”, что позволило довести массу станции до 71 т, а суммарную продолжительность работы трех экипажей – до 171 суток. Однако аппарат, предназначенный в основном для утилизации “лишних” лунных ракет, не имел перспектив развития и остался в единственном экземпляре.

С 1986 по 2001 г. в космосе работал орбитальный комплекс “Мир”, собранный на околоземной орбите из семи отдельных модулей. На нем впервые постоянно присутствовали космонавты и регулярно менялись экипажи. В дальнейшем планировалось строительство комплекса “Мир-2” из более крупных модулей (100 т вместо 20 т). Сам комплекс превратился бы в базу для пилотируемых, посещаемых и автоматических космических аппаратов, решающие различные научные, народно-хозяйственные и военные задачи. Но события, произошедшие в нашей стране в 1988-1933 гг., сделали невозможной реализацию этого проекта.

В США с начала 80-х гг. велись работы над созданием орбитальной станции “Фридом” (“Свобода”). Сложность и масштабность поставленных перед комплексом задач, отсутствие опыта строительства подобных конструкций способствовали значительному удорожанию программы, и в конце концов ее закрыли.

Поиски средств, нужных для выживания космической отрасли, при катастрофическом сокращении, государственного финансирования – в России, необходимость как-то оправдаться перед налогоплательщиками за расходование колоссальных средств без видимого результата – в США привели к возникновению совместного проекта орбитальной станции “Альфа”, строящейся сейчас под названием “Международная космическая станция” (МКС). Несмотря на увеличение массы и размеров, а также успешное решение ряда сложнейших организационных проблем, МКС не имеет существенных качественных преимуществ перед ОК “Мир” и представляет собой шаг назад по сравнению с проектами “Мир-2” и “Фридом”.

VIII. Классификация космических аппаратов.

Космические аппараты (КА) по наличию на борту людей подразделяются на пилотируемые и автоматические. У первых обязательно есть герметичная кабина экипажа, система обеспечения жизнедеятельности и система возращения космонавтов на Землю (либо устройства перехода на другой КА, имеющий такие средства). При этом все пилотируемые КА (кроме воздушно-космического самолета “Спейс Шаттл”) способны выполнить беспилотный полет.