Смекни!
smekni.com

работа по химии на тему: «управление химическими процессами» (стр. 3 из 6)

Следовательно, пропускаемый через электролит ток распределяется между несколькими процессами, протекающими на данном электроде одновременно:

I=i1+i2+i3+…+i n
где: I – ток, протекаемый через электролизёр; i1 и i2 – ток, расходуемый в единицу на первую и второю электролитическую реакцию.

Для того чтобы учитывать эффективность использования пропущенного через электролизёр количества электричества на образования того или иного продукта вводится понятие выхода по току.

Выход по току – отношение количества теоретически необходимого для получения

того или иного количества электричества к практически затраченному количеству электричества. С целью уменьшения затрат электроэнергии на побочные электрохимические реакции и повышения по току стремятся проводить электролиз в таких условиях, при которых затруднено разложение растворителя, т.е. велика поляризация при окислении или восстановлении растворителя (например перенапряжение кислорода или водорода). Это достигается повышением плотности тока, изменением температуры электролита, подбором материала электролита и т. д.

Выход по веществу – это отношение количества полученного в результате электрохимических реакций продукта к тому количеству, которое должно образоваться теоретически, исходя из данной загрузки исходного продукта. КПД использования электроэнергии (выход по энергии) – это отношение теоретически необходимого для получения единицы количества вещества электроэнергии к практически израсходованному. Теоретически необходимое количество электроэнергии – то количество ее, которое было бы необходимым для получения единицы количества вещества, если бы процесс происходил со 100% выходом по току и при напряжении, равном напряжению разложения. Следовательно, выход по энергии может быть определен по формуле:

ηэ=Wп/N=ηтока * ηнапр

Выход по току ηтока и по веществу, а также коэффициент полезного действия использования электроэнергии ηнапр обычно измеряют в процентах. Расход электроэнергии обычно относят к единице произведенного количества продукта измеряют в вт ч/кг или квт ч/т. Для расчета расхода электроэнергии постоянного тока на 1т произведенного электролизом продукта можно воспользоваться следующей формулой:

W=1*106*U/k ηтока *1000

где: W – расход электроэнергии постоянного тока кВтч/т; U – напряжение на электролизере, В; k элктрохимический эквивалент, грамм/а*r; ηтока – выход по току, доли единицы; 1000 – коэффициент для перевода вт*ч в квт*ч.

Расход электроэнергии переменного тока на единицу произведенного продукта может быть определен делением расхода электроэнергии постоянного тока на то же количество коэффициента при образовании переменного тока в постоянный.

Между временем пропускания через раствор или расплав электролита электрического тока (количеством электричества) и количеством образующегося и расходуемого вещества имеются строгие количественные соотношения.

Применение электролиза

Электролиз широко применяется в различных отраслях промышленности. В химической промышленности электролизом получают такие важные продукты как хлор и щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, перманганат калия, органические соединения, химически чистые водород, кислород, фтор и ряд других ценных продуктов.

В цветной металлургии электролиз используется для рафинирования металлов, для извлечения металлов из руд. Металлы, которые не могут быть выделены из водных растворов вследствие высокого отрицательного потенциала получают в цветной металлургии электролизом расплавленных сред, в качестве которых служат соли этих металлов, содержащие добавки различных соединений, вводимые с целью понижения температуры плавления расплава, повышения электропроводности и т.д. К числу металлов, получаемых электролизом расплавленных сред относятся алюминий, магний, цирконий, титан, уран, бериллий и ряд других металлов.

Электролиз применяют во многих отраслях машиностроения, радиотехники, электронной, полиграфической промышленности для нанесения тонких покрытий металлов на поверхность изделий для защиты их от коррозии, придания декоративного вида, повышения износостойкости, жаростойкости, получения металлических копий.

Несмотря на большое разнообразие электролитов, электродов, электролизеров, имеются общие проблемы технического электролиза. К ним следует отнести перенос зарядов, тепла, массы, распределение электрических полей. Для ускорения процесса переноса целесообразно увеличивать скорости всех потоков и применять принудительную конвекцию. Электродные процессы могут контролироваться путем измерения предельных токов. [2]

Электролиз, как очевидно, может служить методом управления лишь в электролитных (токопроводящих) системах, относительное число которых не столь уж велико.

Радиационно-химические процессы

Технологические процессы, в которых для изменения химических или физических свойств системы используются ионизирующие излучения. Наблюдаемые при проведении радиационно-химических процессов эффекты являются следствием образования и последующих реакций промежуточных частиц (ионов, возбуждённых молекул и радикалов), возникающих при облучении исходной системы. В цепных радиационно-химических процессах (величина G от 103 до 106) излучение играет роль инициатора. В ряде случаев такое инициирование даёт значительные технологические и экономические преимущества, в том числе лучшую направленность процесса и возможность осуществления его при более низких температурах, а также возможность получения особо чистых продуктов. В нецепных радиационно-химических процессах энергия излучения расходуется непосредственно для осуществления самого акта превращения. Такие процессы связаны с большими затратами энергии излучения и имеют ограниченное применение.

К числу интенсивно изучаемых и практически реализуемых цепных радиационно-химических процессов относятся различные процессы полимеризации, теломеризации, а также синтеза ряда низкомолекулярных соединений. Важное практическое значение приобрели радиационные методы отверждения связующих (полиэфирных и др.) в производстве стеклопластиков и получении лакокрасочных покрытий на металлических, деревянных и пластмассовых изделиях. Значительный интерес представляют радиационно-химические процессы прививочной полимеризации. В этих процессах исходные полимерные или неорганические материалы различного назначения облучаются в присутствии соответствующих мономеров. В результате поверхности этих материалов приобретают новые свойства, в некоторых случаях уникальные радиационно-химические процессы этого типа практически применяются и для модифицирования нитей, тканей, плёнок и минеральных материалов. Большой интерес представляют также радиационно-химические процессы модифицирования пористых материалов (древесины, бетона, туфа и т.д.) путём пропитки их мономерами (метилметакрилатом, стиролом и др.) и последующей полимеризации этих мономеров с помощью g-излучения. Такая обработка значительно улучшает эксплуатационные свойства исходных пористых тел и позволяет получить широкий ассортимент новых строительных и конструкционных материалов. Цепные радиационно-химические процессы осуществляются также с целью синтеза низкомолекулярных продуктов. Установлена высокая эффективность радиационно-химические процессы окисления, галогенирования, сульфохлорирования, сульфоокисления.

Из процессов, в которых излучение инициирует нецепные реакции, широкое распространение получили радиационно-химические процессы «сшивания» отдельных макромолекул при облучении высокомолекулярного соединения. В результате «сшивания» (например, полиэтилена) происходит повышение его термостойкости и прочности, а для каучуков радиационное «сшивание» обеспечивает их вулканизацию. На этой основе разработаны радиационно-химические процессы производства упрочнённых и термостойких полимерных плёнок, кабельной изоляции, труб, вулканизации резинотехнических изделий и др. Особенно интересным является «эффект памяти» облученного полиэтилена. Если облученное изделие из полиэтилена деформировать при температурах выше tпл аморфной фазы полимера, то при последующем охлаждении оно сохранит приданную форму. Однако повторное нагревание возвращает первоначальную форму. Этот эффект даёт возможность получать термоусаживаемые упаковочные плёнки и электроизоляционные трубки.

Разработка промышленных радиационно-химических процессов привела к возникновению радиационно-химической технологии, главная задача которой - создание методов и устройств для экономичного осуществления радиационно-химических процессов в промышленном масштабе.

Для проведения радиационно-химических процессов используются изотопные источники g-излучения, ускорители электронов с энергиями от 0,3 до 10 Мэв и ядерные реакторы. В современных изотопных источниках чаще всего используется 60Co. Перспективными источниками g-излучения считаются и радиационные контуры при ядерных реакторах, состоящие из генератора активности, облучателя радиационной установки, а также соединяющих их коммуникаций и устройств для перемещения по контуру рабочего вещества. В результате захвата нейтронов в генераторе, расположенном в активной зоне ядерного реактора или вблизи от неё, рабочее вещество активизируется, а g-излучение образовавшихся изотопов используется затем в облучателе для проведения радиационно-химических процессов. Для облучения сравнительно тонких слоев материала наиболее эффективным оказывается применение ускоренных электронов, обеспечивающее ряд преимуществ: высокие мощности доз, лучшие для обслуживающего персонала условия радиационной безопасности, отсутствие в выключенном состоянии расхода энергии и т.д. [6]