Смекни!
smekni.com

Методические указания по выполнению лабораторных работ по курсу (стр. 1 из 11)

Федеральное агентство по образованию

Ангарская государственная техническая академия

Кафедра «Машины и аппараты химических производств»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ

ЛАБОРАТОРНЫХ РАБОТ ПО КУРСУ

ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

ЧАСТЬ I «ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ»

Ангарск 2008

Методические указания по выполнению лабораторных работ по курсу «Процессы и аппараты химических производств». Часть I «Гидромеханические процессы».

Составили: Л. И. Рыбалко, В. В. Набока, В. М. Соломонова.

Ангарская государственная техническая академия - Ангарск, АГТА 2008 – 52с.

Методические указания предназначены для студентов химико-технологических и механических специальностей.

Рецензент к. т. н., доцент Фереферов М.Ю.

Рекомендовано к изданию учебно-методическим советом АГТА.

ЛАБОРАТОРНАЯ РАБОТА 1

ИЗУЧЕНИЕ ГИДРОДИНАМИКИ ТАРЕЛЬЧАТЫХ И НАСАДОЧНЫХ КОЛОНН

Цель работы: практическое ознакомление с работой тарельчатых и насадочных колонн, определение гидравлических сопротивлений и изучение влияния скорости газа на сопротивление тарелок и насадок.

Приборы и принадлежности: тарельчатая и насадочная колонны, ротаметры РС-7 и РС-5, микроманометр с наклонной трубкой.

Установка для изучения гидродинамики состоит из тарельчатой и насадочной колонн (рис. 1).

Рис.1. Схема установки для изучения гидродинамики тарельчатых и насадочных колонн

Тарельчатая колонна 1 состоит из цилиндрического корпуса, выполненного из органического стекла. Внутри колонны имеются две колпачковые 5 и две ситчатые тарелки 2. Каждая ситчатая тарелка имеет различное число и различный диаметр отверстий. Каждая колпачковая тарелка имеет по два капсульных колпачка 3. В нижней части колпачка имеются прорези в виде равнобедренного треугольника.

Вода в колонну подается сверху через ороситель 7 и перетекает вниз с тарелки на тарелку по сегментным переливным каналам 4. Концы переливных каналов находятся в сливных карманах 6, создавая гидравлический затвор на тарелках, что предотвращает проскок воздуха по сливным каналам. Сливные каналы выступают над тарелками, образуя сливной порог, что обеспечивает определенный уровень жидкости на тарелках. Подача воды в колонну регулируется вентилем 16, а ее расход измеряется ротаметром 8. Для подачи воды в тарельчатую колонну необходимо, чтобы рукоятка трехходового крана 18 находилась в положении Т (тарелка). Вода, сливаясь в нижнюю часть колонны, отводится через гидрозатвор и вентиль 21 в канализацию.

Воздух от компрессора подается через ротаметр 12, которым измеряется его расход, и поступает в нижнюю часть колонны выше точки слива воды по гидрозатвору. Расход воздуха регулируется вентилем 17. При подаче воздуха в тарельчатую колонну необходимо, чтобы вентиль 20 был открыт, а вентиль 19 закрыт.

Для измерения гидравлического сопротивления тарелок колонна снабжена пробоотборниками I-V.

Насадочная колонна 9 имеет два слоя насадки из керамических колец Рашига размером 15*15*2 мм, расположенных на опорных решетках 10. Для перераспределения жидкости по сечению колонны и отвода ее от стенок под верхним слоем насадки установлен направляющий конус 11. Вода на орошение поступает в верхнюю царгу через ороситель. Расход воды измеряется ротаметром 8 и регулируется вентилем 16. При этом регулятор 18 должен находиться в положении Н (насадка). Слив воды идет в нижнюю часть колонны, а затем через гидрозатвор и вентиль 22 в канализацию.

Подача воздуха от компрессора регулируется вентилем 17 и измеряется ротаметром 12. При этом вентиль 19 должен быть открыт, а вентиль 20 закрыт.

Гидравлическое сопротивление насадки измеряется через пробоотборники VI-VIII.

Тарельчатая и насадочная колонны могут работать только раздельно. Переключение осуществляется регулятором 18 и вентилями 19, 20. Регулирование слива из колонн производится вентилями 21 и 22 для предотвращения переполнения колонн жидкостью и возможного прорыва воздуха через слив.

Измерения гидравлических сопротивлений (перепада давлений) осуществляется микроманометром с наклонной трубкой 13 типа ММН, который подключен через многоходовые переключатели 14 (вход) и 15 (выход) с пробоотборниками. Для измерения перепада давления, например, верхней колпачковой тарелки необходимо переключатель 14 установить в положение II (т.е. отбор воздуха пойдет через пробоотборник II), а переключатель 15 в положение III (отбор сверху тарелки), и по микроманометру снять показания гидравлического сопротивления в мм. вод. ст. Аналогично производятся измерения для других тарелок и насадки или группы тарелок и колонн в целом.

В барботажных аппаратах, к которым относится тарельчатая колонна, контакт фаз осуществляется путем барботажа (пробулькивания) газа через слой жидкости. На колпачковой тарелке газ проходит по патрубкам под колпачками и барботирует через жидкость, выходя через прорези колпачков. На ситчатой тарелке газ проходит через небольшие отверстия в плоской тарелке и барботирует через жидкость, находящуюся на ней.

В насадочной колонне кольца Рашига, беспорядочно засыпанные в аппарат, увеличивают поверхность соприкосновения газа и жидкости. Жидкость стекает по поверхности насадки тонкой пленкой и одновременно распределяется в слое в виде капель и брызг.

Характеристика тарельчатой колонны:

Внутренний диаметр колонны – 150 мм

Количество колпачков на тарелке – 2 шт

Внутренний диаметр колпачка – 40 мм

Число прорезей в колпачке – 8 шт

Форма прорези – равнобедренный треугольник

Размер зуба у основания – 15 мм

Высота зуба – 10 мм

Высота перелива (сливного порога) – 20 мм

Периметр перелива – 150 мм

Площадь перелива – 8.0*10-4 м2

Ситчатая тарелка (нижняя) имеет 216 отверстий диаметром

4 мм

Ситчатая тарелка (верхняя) имеет 238 отверстий диаметром

3 мм

Характеристика насадочной колонны:

Диаметр колонны – 125 мм

Высота насадки (общая) - 600 мм

Высота насадки в одной царге – 300 мм

ОСНОВНЫЕ ПОНЯТИЯ

Общие сведения

В химической технологии широко распространены процессы, основанные на взаимодействии газа и жидкости. К ним относятся, в первую очередь, массообменные процессы, связанные с переходом вещества из фазы в фазу. К массообменным процессам относятся абсорбция, ректификация, экстракция, сушка и другие. Эти процессы в промышленных установках проводятся в аппаратах колонного типа.

Скорость перехода вещества из фазы в фазу пропорциональна поверхности соприкосновения фаз (поверхности контакта фаз). А саму скорость определяют как количество вещества, переходящего из фазы в фазу в единицу времени. Увеличение поверхности контакта фаз способствует более интенсивному течению процесса перехода вещества из одной фазы в другую. Поэтому одним из главных требований, предъявляемых к массообменному аппарату, является создание развитой поверхности контакта фаз между газом и жидкостью. Однако создание необходимой поверхности в этих аппаратах требует затраты энергии на преодоление сопротивлений движению газа (гидравлических сопротивлений).

Современные масштабы производства требует создания мощных аппаратов. Достаточно сказать, что в настоящее время имеются тарельчатые колонны диаметром 12 м и высотой 100 м. Гидравлическое сопротивление таких аппаратов, вызванное потерей напора на трение и местные сопротивления, велико и требует достаточно точной оценки при проектировании. Поэтому необходимо знать влияние различных факторов на гидравлическое сопротивление. Знание этих факторов позволяет получить необходимые расчетные уравнения.

Тарельчатые колонны

Тарельчатые колонны бывают с колпачковыми, ситчатыми, клапанными, провальными и другими типами контактных устройств – тарелками. Они относятся к барботажным аппаратам, в которых поверхность соприкосновения фаз создается потоками газа, распределяющегося в жидкости в виде пузырьков и струй. Особенностью тарельчатых колонн является то, что газ и жидкость последовательно соприкасаются на отдельных ступенях (тарелках) аппарата. В колоннах с колпачковыми тарелками газ проходит по патрубкам в пространстве под колпачком и барботирует через жидкость на тарелке, выходя из прорезей колпачков. В ситчатых аппаратах газ проходит через жидкость, находящуюся на тарелках.

При барботаже часть газа вследствие трения диспергируется в жидкость, образуя пену, а часть жидкости увлекается газом в виде брызг, что и создает развитую поверхность соприкосновения фаз (жидкости и газа).

Скорость газа оказывает непосредственное влияние на интенсивность пено- и брызгообразования. В зависимости от скорости газа различают три режима работы барботажных тарелок:

- режим непрерывной работы – наблюдается при скорости газа в свободном сечении колонны (между тарелками) 0,5-0,6

. При такой скорости прорези колпачков закрыты жидкостью не полностью. Газ барботирует по всей поверхности тарелки, и в отдельных местах остается небарботируемая жидкость;

- режим равномерной работы – наступает при увеличении скорости газа свыше 0,6-0,7

. При этом прорези колпачков полностью открыты. На тарелке образуется пена;

- режим газовых струй – наблюдается при скорости газа 0,9-1,1

. В этом случае газ движется через жидкость в виде струй, которые выходят на поверхность пены, разрушая ее. При дальнейшем увеличении скорости газа начинается унос жидкости на вышележащую тарелку, что приводит к захлебыванию тарелки. Это сопровождается увеличением перепада давлений газа.