Смекни!
smekni.com

Алексеева Кафедра «Технология неорганических веществ» (стр. 4 из 4)

По одному из разработанных способов /16/, гидроксид алюминия разлагают серной кислотой при 110 – 120 ºС, сплав охлаждают и распыляют на слой готового продукта в течении 0,4 – 0,8 с. Затем ведут последующую грануляционную кристаллизацию в течение 15 – 25 мин.

Разработан и внедрён в производство способ кристаллизации, согласно которого процесс кристаллизации проводят на охлаждаемой изнутри наружной поверхности горизонтального вращающегося барабана. Барабан частично погружен в находящийся в поддоне плав, имеющий температуру 90 – 100 ºС. Кристаллизаторы облегчают условия труда, обеспечивают непрерывность режима производства и улучшают физические свойства целевого продукта.

Разработан способ непрерывного получения сульфата алюминия /13/, по которому водная суспензия гидроксида алюминия и серная кислота в стехиометрическом отношении подаются с большой скоростью дозирующими насосами в смесительные форсунки реактора, в котором масса находится не менее 30 с, после чего она охлаждается до температуры ниже 100 ºС в проточном холодильнике и продавливается через сопла и прорези для образования мелкогранулированного продукта.

Разработан способ получения кристаллического сульфата алюминия высокой чистоты выдерживанием в отдельном сборнике суспензии, полученной в процессе упарки раствора, до её охлаждения, с целью образования более крупных частиц примесей. После массу охлаждают для кристаллизации /13/.

Известно изобретение /17/, предназначенное для получения гранулированного сульфата алюминия. Способ получения гранулированного сульфата алюминия заключается в том, что плав сульфата алюминия пропускают через перфорированную виброперегородку в гидрофобную жидкость для образования сферических частиц при весовом соотношении гранулированного сульфата алюминия к гидрофобной жидкости в пределах от 1 : 1 до 1 : 3, при этом температуру гидрофобной жидкости поддерживают в пределах 10 - 20oС, а время пребывания гранул в гидрофобной жидкости составляет 10 - 30 мин, затем разделяют гидрофобную жидкость от образовавшихся гранул. Плав сульфата алюминия пропускают через перфорированную виброперегородку с диаметром отверстий 0,5 - 0,8 мм при поддержании температуры плава 100 - 115oС. Разделение гидрофобной жидкости и образовавшихся гранул осуществляют на центрифуге с фактором разделения от 300 до 1000 при 25 - 45oС. Изобретение позволяет удешевить процесс и улучшить качество продукта.

Заключение

Основным методом производства очищенного сульфата алюминия в настоящее время является получение его из гидроксида алюминия. Большое распространение этого метода обусловлено относительной его простотой, возможностью получения высококачественного продукта с незначительным содержанием оксидов железа, а также пониженными транспортными расходами /12/.

Именно таким способом, до настоящего времени, получают коагулянт – сульфат алюминия на ОАО « Капролактам». Продукт получают двух видов: водный раствор и в твёрдой кусковой форме. В эмалированный реактор загружают гидроксид алюминия, серную кислоту и воду. Реакционная масса выдерживается до созревания продукта. Затем для получения жидкого продукта в промежуточном реакторе расплав разбавляют водой, чтобы концентрация сульфата алюминия в растворе в пересчёте на Al2O3 была не менее 7%. Для получения твёрдого сульфата алюминия расплав из реактора разливают в формы. Затвердевший коагулянт освобождают от форм и дробят вручную, что приводит к значительным потерям продукта.

Эти две формы не слишком удобны для транспортировки. О применении дозировочно-расфасовочного оборудования в этих условиях говорить не приходится. Многотоннажные потребности в коагулянте – сульфате алюминия для очистки питьевой воды заставляют решать вопрос его получения в такой форме, которая позволила бы применять расфасовочно-дозировочное оборудование при дальнейшем использовании коагулянта в технологических процессах очистки питьевой воды. Наиболее удобной формой твёрдого коагулянта – сульфата алюминия являются чешуйки и сферические гранулы.

Выпуск продукта в гранулированном виде позволит решить ряд важных проблем: обеспечить транспортировку продукта в затаренном виде, что уменьшит потери его при транспортировке, перегрузках, хранении. На водоочистных станциях возможно будет внедрить прогрессивное сухое дозирование коагулянта, широко используемое в мировой практике. Всё это способствовало бы дополнительной экономии дефицитного сульфата алюминия /1/.

Поэтому актуален поиск путей получения гранулированного сульфата алюминия, как коагулянта.

Список использованных источников

1. Смирнов, А.О. Коагулянты / А.О. Смирнов //Сб.: Технология коагулянтов; под ред. Ткачёва К.В. – Л.: «Химия», 1988. С. 3 – 6.

2. Алфёрова, А.А., Нечаева, А.П. Замкнутые системы водного хозяйства примышленных предприятий, комплексов и районов / А.А. Алферова, А.П. Нечаева. – М.: Стройиздат, 1987.

3. Яковлев, С.В., Демидов, О.В. Технологические проблемы очистки природных и сточных вод / С.В. Яковлев, О.В. Демидов // ТОХТ – М., 1999. Т. 33.

№ 5. С. 591 – 592.

4. Кульский, Л.А. Теоретические основы и технология кондиционирования воды /Л.А. Кульский. – Киев: Наук. думка, 1983. – 527 с.

5. Фридрихсберг, Д.А. Курс коллоидной химии / Д.А. Фридрихсберг – Л.: Химия, 1984. – 368 с.

6. Барышева, И.А. Коагуляционная очистка сточных вод предприятий целлюлозно-бумажной промышленности / И.А. Барышева, А.Б. Дягилева,

Ю.М. Чернобережский // ЖПХ. 199. Т. 67. № 3. С. 402 – 406.

7. Бабенков, Е.Д. Очистка воды коагулянтами / Бабенков Е.Д. – М.: «Наука», 1977. – 356 с.

8. Проскуряков, В.А., Шмидт, Л.И. Очистка сточных вод в химической промышленности / В.А. Проскуряков, Л.И. Шмидт. – Л.: «Химия», 1977.

9. Пат. 23567 Украина, МПК C 01 F 7/76. Способ получения оксихлоридосульфатов алюминия, используемых в качестве коагулянтов / Кобицька, Л.И., Потанин, В.М., Стрешинский, А.Р. № 97062678; заявл. 06.06.1997; опубл. 31.08.1998, Бюл. № 4.

10. Куренков, В.Ф. Применение катионных полимеров в качестве органических коагулянтов в водоочистке тепловых электростанций. / В.Ф. Куренков [и др.] // ЖПХ. 2003. Т. 76. № 12. С. 2000 – 2003.

11. Позин, М.Е. Технология минеральных солей (удобрений, пестицидов, промышленных солей, окислов и кислот) / М.Е. Позин. – Л.: Химия, изд. 4-е, испр., 1974. Ч. 1.

12. Запольский, А.К., Баран, А.А. Коагулянты и флокулянты в процессах очистки воды: Свойства. Получение. Применение /А.К. Запольский, А.А. Баран. – Л.: Химия, 1987. – 208 с.