Смекни!
smekni.com

по астрономии. Тема: Строение и эволюция вселенной (стр. 3 из 5)

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями (более 250 000 км/с) обладают некоторые квадры, которые считаются самыми удаленными от нас объектами Метагалактики.

Мы живем в расширяющейся метагалактики; расширение метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения метагалактики.

Промежуток расширения равен 20-13 млрд. лет. Расширение метагалактики является самым грандиозным, из известных в настоящие время явлений природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной присущи естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

5.История развития взглядов о строении Вселенной

Все эти данные удалось получить только с помощью уникального, сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество совершенствует его, изобретая все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

(Стихии мыслились сначала как полуматериальные, полубожественные, одухотворенные субстанции. Представление чисто материальной основе всего сущего в древнегреческой основе достигли своей вершины в учении атомистов Левкиппа и Демокрита (V-IV в.в. до н.э.) о Вселенной, состоящей из бескачественных атомов и пустоты.)

Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксимандр высказал идею изолированности Земли, в пространстве. Эйлалай первым описал пифагорейскую систему мира, где Земля, как и Солнце, обращались вокруг некоего «гигантского огня». Шарообразность Земли утверждал другой пифагореец, Парменид (VI-V в.в. до н.э.). Гераклит Понтийский (V-IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596-1650) создал теорию об эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в.в. его идея была необыкновенно смелой. По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы, находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся, увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем вызывают явление тяжести (например на Земле). Таким образом, Декарт первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной. Он представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания ,и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре). Заменив в данном случае теорию абсолютности пространства и времени идей их относительности «Пуанкаре», которую теперь уже не связывали с идеей абсолютного в пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более того, открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень революционности своей идеи.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла, Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космогологические следствия общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

6.Теория “Большого взрыва”.

Вселенная постоянно расширяется. Тот момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “Большим взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда-то же самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой. Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Подробный анализ показывает, что температура вещества Т понижалась во времени в соответствии с простым соотношением:

*

Зависимость температуры Т от времени t дает нам возможность определить, что, например, в момент, когда возраст вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.

Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT . Согласно соотношению hn=kT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота n. Понижение энергии фотонов во времени имело важные последствия для возникновения частиц и античастиц путем материализации. Для того чтобы фотон превратился (материализовался) в частицу и античастицу с массой m0 и энергией покоя m0c2, ему необходимо обладать энергией

m0c2 или большей. Эта зависимость выражается так :

* hn >=2m0c2

Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc2), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой m0. (Так, например, фотон, обладающий энергией меньшей, чем 2.938 Мэв = 938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.)

( В предыдущем соотношении можно заменить энергию фотонов hn кинетической энергией частиц kT ,

* kT >= 2 m0c2

то есть

T >= 2 m0c2 .

* k

Знак неравенства означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже значения. )