Смекни!
smekni.com

«Космическое излучение» (стр. 3 из 4)

Строение полужесткого скафандра (для космоса)

где
1-6 мягкие части скафандра; 2 - разъем пневмо- и гидромагистралей; 3 - ручка для входного люка; 4 - карабин страховочного фала; 5,10 - гермоподшипники; 7 - клапан резервного запаса кислорода; 8 - светофильтр; 9 - жесткий корпус; 11 - заплечный ранец; 12 - пульт контроля; 13 - регулятор давления; 14 - индикатор давления; 15 - перчатка; 16 - силовой шпангоут; 17 - штепсельный разъем

Структура мягкой части скафандра

1 - наружная защитная ткань; 2 - пакет слоев экранно- вакуумной изоляции; 3 - силовые оболочки скафандра; 4 - основная герметичная оболочка; 5 - дублирующая; 6 - подкладка; 7 - трубки системы вентиляции; 8 - вентиляционный зазор; 9 - костюм водяного охлаждения; 10 - трубки системы водяного охлаждения; 11- нательное белье.

Первый скафандр для выхода в открытый космос, который использовал А.Леонов, был жестким, неподатливым, весом около 100 кг, но современники его считали настоящим чудом техники и «машиной посложнее автомобиля».

Таким образом, все предложения по защите космонавтов от космических лучей не надежны.

6. ОБРАЗОВАНИЕ ВСЕЛЕННОЙ

Если говорить честно, мы хотим не только узнать,

как устроена, но и по возможности достичь цели

утопической и дерзкой на вид – понять, почему

природа является именно такой. В этом состоит

прометеевский элемент научного творчества.

А. Эйнштейн.

Итак, космическое излучение приходит к нам из безграничных просторов Вселенной. А как же образовалась сама Вселенная?

Именно Эйнштейну принадлежит теорема, на основе которой были выдвинуты гипотезы ее возникновения. Существует несколько гипотез образования Вселенной. В современной космологии наиболее популярными являются две: теория Большого Взрыва и инфляционная.

Современные модели Вселенной основываются на общей теории относительности А. Эйнштейна. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей.

Первая модель была разработана А. Эйнштейном в 1917 году. Он отбросил постулаты Ньютона об абсолютности и бесконечности пространства и времени. В соответсвии с этой моделью мировое пространство однородно и изотропно, материя в нем распределена равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, а пространство безгранично, но конечно. Вселенная в космологической модели Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922 году русский математик и геофизик А.А. Фридман отбросил постулат о стационарности и получил решение уравнения Эйнштейна, описывающее Вселенную с «расширяющимся» пространством. В 1927 году бельгийский аббат и ученый Ж. Леметр на основе астрономических наблюдений ввел понятие начала Вселенной как сверхплотного состояния и рождения Вселенной как Большого Взрыва. В 1929 году американский астроном Э. П. Хаббл обнаружил, что все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что

близко по размерам к радиусу электрона, а ее

плотность составляла 1096г/см3. От

первоначального состояния Вселенная перешла к расширению в результате большого взрыва. Ученик А. А. Фридмана Г. А. Гамов предположил, что температура вещества после взрыва была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур.

Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с, температура 1012 градусов по Кельвину, плотность 1014 г/см3. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.

Эра лептонов ( легких частиц, вступающих в электромагнитное взаимодействие). Продолжительность эры 10 с, температура 1010 градусов по Кельвину, плотность 104 г/см3. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы – энергии Вселенной – приходится на фотоны. К концу эры температура падает с 1010 до 3000 градусов по Кельвину, плотность – с 104 г/см3 до 1021 г/см3. Главную роль играет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Еще одной гипотезой является инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10-45 с после начала расширения.

В соответствии с этой гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов. Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10-50 см (для сравнения: размер атома определяется как 10-8 см, а размер атомного ядра 10-13 см). Основные события в ранней Вселенной разыгрывались за ничтожно малый промежуток времени от 10-45 с до 10-30 с.

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. За период инфляционной стадии продолжительностью 10-34 с Вселенная раздулась от невообразимо малых квантовых размеров (10-33) до невообразимо больших (101000000) см, что на много порядков превосходит размер наблюдаемой Вселенной – 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые после аннигиляции дали мощную вспышку излучения (света), осветившего космос.

Остатки сверхновой NGC 6995 - это горячий светящийся газ, образовавшийся после взрыва звезды 20-30 тысяч лет назад. Подобные взрывы 10-14 млрд. лет назад активно обогащали пространство тяжелыми элементами из которых впоследствии образовывались планеты и звезды следующего поколения.

Этап отделения вещества от излучения: оставшееся после аннигиляции вещество, стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от вещества излучение и составляет современный реликтовый фон – это остаточное явление от первоначального излучения, возникшего после взрыва в момент начала образования Вселенной. В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур – атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, к возникновению жизни и как венца творения – человека.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого Взрыва касается только первоначального этапа порядка 10-30с, далее между этими моделями принципиальных расхождений нет. Различия в объяснении механизмов космической эволюции связаны с мировоззренческими установками.

Участок неба с наиболее древними звездами нашей Галактики - Млечного Пути. Эти слабосветящиеся белые карлики имеют возраст 10-12 млрд. лет и однозначно указывают на то, что наша Галактика родилась примерно через миллиард лет после Большого взрыва.

Первой стала проблема начала и конца времени существования Вселенной, признание которой противоречило материалистическим утверждениям о вечности, несотворимости и неуничтожимости и т. п. времени и пространства.

В 1965 году американскими физиками-теоретиками Пенроузом и С.Хокингом была доказана теорема, согласно которой в любой модели Вселенной с расширением обязательно должна быть сингулярность – обрыв линий времени в прошлом, что можно понимать как начало времени. Это же верно и для ситуации, когда расширение сменится на сжатие – тогда возникнет обрыв линий времени в будущем – конец времени. Причем точка начала сжатия интерпретируется как конец времени – Великий Сток, куда стекаются не только галактики, но и сами «события» всего прошлого Вселенной.