Смекни!
smekni.com

Обоснование основных требований к аппаратуре ингкс и наземной системе регистрации. Экспериментальные исследования по обоснованию основных функциональных узлов и структурного построения аппаратуры ингк (стр. 3 из 7)

Как известно [27, 52], при облучении горных пород быстрыми нейтронами последние испытывают различные взаимодействия с ядрами вещества, передавая им часть своей энергии. В процессе замедления до энергии теплового движения атомов (Е»1·10 -2 эВ), происходят упругие и неупругие рассеяния нейтронов на ядрах атомов, кроме того, тепловые нейтроны участвуют в процессах термализации, процессах диффузии и, наконец, поглощаются ядрами.

В результате первых соударений (1-2 акта) наиболее вероятным взаимодействием является неупругое рассеяние, при этом нейтроны замедляются до энергии ~1 МэВ, передавая большую часть энергии на возбуждение ядра-мишени. Вероятность неупругого рассеяния тем выше, чем выше энергия нейтронов. Возврат ядра-мишени из возбуждённого состояния происходит за 10-14 с и сопровождается вторичным гамма-излучением, которое называется гамма-излучением неупругого рассеяния (ГИНР) [16]. Спектр ГИНР является индивидуальной характеристикой ядра.

Дальнейшее замедление нейтронов происходит в процессе упругого рассеяния, при котором кинетическая энергия нейтрона до соударения переходит в кинетическую энергию нейтрона и ядра-отдачи после соударения, эти процессы продолжаются до достижения нейтроном тепловой энергии. Наибольшим сечением упругого рассеяния обладает водород, его присутствие в окружающей среде играет основную роль в процессе замедления. Упругое рассеяние не сопровождается гамма-излучением.

Таблица 1 - Основные породообразующие элементы и их характеристики

гамма-излучения неупругого рассеяния и радиационного захвата нейтронов

Элемент Среднее содержание в горных породах, % Eпор, МэВ Ơнеупр, барн Ơзахв, барн Энергия ГИНР, МэВ (мбарн) Энергия ГИРЗ, МэВ (выход на 100 захватов)
12 C 0.02298 4.80 0.446 3.4´10-3 4.43 (13,1), 4.95(68), 3.68(32), 1.26(32),
16 O 46.89 6.44 0.318 1.2×10-3 6.13(10.4), 7.12(5.0) 2.18(82), 1.09(82), 3.27(18),
40 Ca 2.87 4.55 0.380 0.44 3.73(9.0), 3.90(3.8) 1.94(81), 6.42(40), 4.42(15),
28 Si 28.54 1.90 0.460 0.16 1.78(29), 2.84(5.3), 3.54(62), 4.93(58), 1.27(12),
56 Fe 4.26 0.86 0.900 2.62 1.24(23), 2.61(3.7) 7.63(25.6),7.65(20.8), 5.9(7.8),
1Н 0.99985 - 0.0 0.33 - 2.23(100).

Замедлившись до тепловой энергии, нейтроны захватываются ядрами элементов горных пород. Последствием радиационного захвата теплового нейтрона почти всегда является немедленное (10-23 с) излучение гамма-квантов (ГИРЗ).

Спектр ГИРЗ также является индивидуальной характеристикой ядра. Наиболее полный список энергий гамма-квантов радиационного захвата приведён в работах [7, 17]. Реже захват тепловых нейтронов приводит к активации ядра - оно становится радиоактивным с некоторым периодом полураспада.

Энергия связи большинства породообразующих элементов составляет 7¸8 МэВ, следовательно, при радиационном захвате тепловых нейтронов возникает жесткое гамма-излуче­ние. При поглощении одного теплового нейтрона испускаются 3¸4 гамма-кванта [16, 17].

Процесс замедления быстрых нейтронов в результате упругих и неупругих взаимодействий длится порядка нескольких первых микросекунд [16], таким образом, через несколько микросекунд после облучения вещества быстрыми нейтронами (вспышка) возникает излучение радиационного захвата. Время жизни тепловых нейтронов в типичных разрезах нефтегазовых скважин колеблется от 100 до 500 мкс, следовательно, во время вспышки тепловые нейтроны от предыдущих вспышек, а также те нейтроны, энергия которых приблизилась к энергии теплового движения во время вспышки, продолжают генерировать гамма-излучение захвата. При регистрации спектров ГИНР гамма-излучение радиационного захвата является фоновым (рисунок 1.1). Фоновую составляющую спектров измеряют при выключенном генераторе нейтронов (“фоновая пауза”). Таким образом, для получения “чистых” спектров ГИНР необходимо регистрировать спектр ГИРЗ и вычитать его из измеренных спектров ГИНР.

Ввиду сложности спектров ГИНР и ГИРЗ ограничимся рассмотрением тех элементов горных пород и насыщающих их флюидов, присутствие которых имеет основное значение для решения поставленной задачи, в первую очередь элементы С, О - для определения присутствия углеводородов, и Ca, Si - как основные элементы, характеризующие состав горных пород (известняк, песчаник). Для основных породообразующих элементов в таблице 1 [7, 15] приведены: энергии порога неупругого рассеяния Eпор, нейтронные сечения неупругого рассеяния - Ơнеупр, сечения поглощения тепловых нейтронов Ơзахв, а также наиболее характерные энергетические линии ГИНР и ГИРЗ.

Данные, приведённые в таблице 1, позволяют сделать следующие выводы:

· сечение радиационного захвата Ơзахв тепловых нейтронов ядрами элементов 12С и 16О очень мало, кроме того, эти элементы не обладают аномальными ядерными свойствами, в связи с этим определение элементов 12С и 16О методом радиационного захвата - проблематично. Однако, как видно из таблицы 1, сечение неупругого рассеяния выше названных элементов достигает значительной величины, что создаёт предпосылки для их определения методом спектрометрии неупругого рассеяния;

· характерные энергетические линии ГИНР и ГИРЗ основных породообразующих элементов лежат в пределах 1¸8 МэВ - это позволяет ограничить диапазон регистрируемых энергий шкалой до 10 МэВ;

· пороговая энергия ГИНР для углерода и кислорода составляет 4.8 и 6.44 МэВ, следовательно, для возбуждения реакции неупругого рассеяния необходимо применение излучателя нейтронов с энергией более 6.44 МэВ.

Основой выбора методики углеродно-кислородного каротажа служит различие содержания углерода и кислорода в нефти и воде. Содержание “С” в различных нефтях колеблется от 82 до 87 % , О от 0.02 до 1.65 %. Содержание “О” в воде по массе составляет 85.82 %, при определении нейтронно-активационным анализом проб пластовых вод [17] присутствия углерода обнаружено не было.

Таким образом, основа метода углеродно-кислородного каротажа состоит в том, что энергия ГИНР и ГИРЗ характерна для каждого элемента, содержащегося в скважине. В результате неупругих рассеяний на ядрах углерода (С) образуется ГИНР с энергией 4.43 МэВ, на ядрах кислорода - 6.13 МэВ. Вместе с тем, количество гамма-квантов, зарегистрированных детектором в определенных энергетических областях, пропорционально концентрации элементов, испускающих данные гамма-кванты. Следовательно, измерение скоростей счета в различных, характерных для каждого элемента энергетических областях, даёт возможность определения относительного содержания элементов в горных породах.

1.2. История и тенденции развития метода ИНГКС в ведущих зарубежных

и отечественных геофизических компаниях

Первые работы по исследованию спектрометрии неупругого рассеяния были опубликованы в конце пятидесятых годов, в результате проведённых модельных измерений была показана принципиальная возможность определения содержания углерода и кислорода по спектрам ГИНР. С появлением первого высокочастотного скважинного генератора нейтронов в начале 60-х годов началось развитие скважинной спектрометрии неупругого рассеяния.

В середине 1970-х годов, фирма Western Atlas, предшественник Baker Atlas, выпустила первый скважинный прибор углеродно-кислородного каротажа. Этот прибор предназначался для определения нефтеводонасыщения на месторождениях с пресными водами или неизвестной минерализацией пластовых вод. Прибор был снабжен импульсным генератором нейтронов (14 МэВ) и регистрировал энергию и интенсивность возникающего под действием быстрых нейтронов вторичного гамма-излучения в спектрах ГИНР и ГИРЗ. Прибор был аналоговым и для получения достаточной точности и повторяемости C/О отношения, измерения проводились в поточечном режиме в интересующем интервале (Culver и др. 1973,). В 1976 году Dresser Atlas начал эксплуатировать первый непрерывный С/О-каротаж, успешно применив для него принципы импульсной гамма-спектрометрии для определения углеводородов (Heflin и др. 1977). Непрерывный С/О-каротаж обеспечивал прямое измерение углеводородов в горных породах посредством регистрации отношения С/О со скоростью записи ~30 м/ч.

В результате дальнейшего развития аппаратуры и методики С/О-каротажа фирмой Western Atlas (Dresser Atlas) была разработана аппаратура MSI C/O серии 2721 XA (Oliver D.W. и др. 1981). Аппаратура регистрировала 256 каналов гамма-излучения неупругого рассеяния и радиационного захвата и передавала посредством аналоговой системы передачи по семижильному каротажному кабелю предварительные данные в наземную систему. Наземная система, состоящая из компьютера и 256-канального амплитудного анализатора, принимала и обрабатывала зарегистрированные спектры. Недостатки, присущие аналоговой передаче данных, были исключены применением цифровой телеметрии в многопараметровой спектрометрической системе С/О каротажа – MSI С/О Log (Chace D.M. и др. 1985).

Учитывая опыт применения первых образцов аппаратуры углеродно-кислородного каротажа в 1984 г. компания Шлюмберже (Shlumberger) выпустила свою аппаратуру С/О-каротажа [4], получившей коммерческое название GST. Позднее, в 1991 году, фирма Halliburton также выпустила аналогичную аппаратуру под фирменным названием PSGT, с использованием сцинтилляционного кристалла BGO (германат висмута).