Смекни!
smekni.com

1. Получение дисперсных систем стр. 5 (стр. 2 из 3)

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к большому расходу энергии на дальнейшее диспергирование. Разрушение материалов может быть облегчено при использовании эффекта Ребиндера – адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно- активных веществ (ПАВ), в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких ПАВ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов, органические вещества для уменьшения прочности органических монокристаллов. Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. ПАВ не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, так как, покрывая поверхность частиц, они тем самым препятствуют обратному слипанию их или слиянию ( для жидкостей). Это также способствует достижению высокодисперсного состояния.

Применением диспергационных методов достичь весьма высокой дисперсности обычно не удается. Системы с размерами частиц порядка 10-6 – 10-7 см получают конденсационными методами.

1.2. Конденсационные методы.

В основе конденсационных методов лежат процессы возникновения новой фазы путем соединения молекул, ионов или атомов в гомогенной среде. Эти методы можно подразделить на физические и химические.

Физическая конденсация. Важнейшие физические методы получения дисперсных систем – конденсация из паров и замена растворителя. Наиболее наглядным примером конденсации из паров является образование тумана. При изменении параметров системы, в частности при понижении температуры, давление пара может стать выше равновесного давления пара над жидкостью (или над твердым телом) и в газовой фазе возникает новая жидкая (твердая) фаза. В результате система становится гетерогенной – начинает образовываться туман (дым). Таким путем получают, например, маскировочные аэрозоли, образующиеся при охлаждении паров P2O5, ZnO и других веществ. Лиозоли получаются в процессе совместной конденсации паров веществ, образующих дисперсную фазу и дисперсионную среду на охлажденной поверхности.

Широко применяют метод замены растворителя, основанный, как и предыдущий, на таком изменении параметров системы, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и тенденция к переходу в равновесное состояние приводит к образованию новой фазы. В отличие от метода конденсации паров (изменение температуры), в методе замены растворителя изменяют состав среды. Так, если насыщенный молекулярный раствор серы в этиловом спирте влить в большой объем воды, то полученный раствор в спирто-водной смеси оказывается уже пересыщенным. Пересыщение приведет к агрегированию молекул серы с образованием частиц новой фазы – дисперсной.

Методом замены растворителя получают золи серы, фосфора, мышьяка, канифоли, ацетилцеллюлозы и многих органических веществ, вливая спиртовые или ацетоновые растворы этих веществ в воду.

Химическая конденсация. Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличии от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. В качестве примеров приведем следующие химические процессы.

1.Восстановление. Классический пример этого метода – получение золя золота восстановлением золотохлористоводородной кислоты. В качестве восстановителя можно применять пероксид водорода (метод Зигмонди) :

2HauCl2+3H2O2®2Au+8HCl+3O2

Известны и другие восстановители: фосфор (М. Фарадей), таннин (В. Освальд), формальдегид (Р.Жигмонди). Например,

2KauO2+3HCHO+K2CO3=2Au+3HCOOK+KHCO3+H2O

2.Окисление. Окислительные реакции широко распространены в природе. Это связано с тем, что при подъеме магматических расплавов и отделяющихся от них газов, флюидных фаз и подземных вод все подвижные фазы проходят из зоны восстановительных процессов на большой глубине к зонам окислительных реакций вблизи поверхности. Иллюстрацией такого рода процессов является образование золя серы в гидротермальных водах, с окислителями (сернистым газом или кислородом):

2H2S+O2=2S+2H2O

Другим примером может служить процесс окисления и гидролиза гидрокарбоната железа:

4Fe(HCO3)2+O2+2H2O®4Fe(OH)3+8CO2

Получающийся золь гидроокиси железа сообщает красно-коричневую окраску природным водам и является источником ржаво-бурых зон отложений в нижних слоях почвы.

3. Гидролиз. Широкое распространение в природе и важное значение в технике имеет образование гидрозолей в процессах гидролиза солей. Процессы гидролиза солей применяют для очистки сточных вод (гидроксид алюминия, получаемый гидролизом сульфата алюминия). Высокая удельная поверхность образующихся при гидролизе коллоидных гидроксидов позволяет эффективно адсорбировать примеси – молекулы ПАВ и ионы тяжелых металлов.

4. Реакции обмена. Этот метод наиболее часто встречается на практике. Например, получение золя сульфида мышьяка:

2H3AsO3+3H2S®As2S3+6H2O,

получение золя йодида серебра:

AgNO3+KI®AgI+KNO3

Интересно, что реакции обмена дают возможность получать золи в органических растворителях. В частности, хорошо изучена реакция

Hg(CN)2+H2S®HgS+2HCN

Ее проводят, растворяя Hg(CN)2 в метиловом, этиловом или пропиловом спирте и пропуская через раствор сероводород.

Хорошо известные в аналитической химии реакции, как, например, получение осадков сульфата бария или хлорида серебра

Na2SO4 + BaCl2® BaSO4 + 2NaCl

AgNO3 + NaCl ® AgCl + NaNO3

в определенных условиях приводят к получению почти прозрачных, слегка мутноватых золей, из которых в дальнейшем могут выпадать осадки.

Таким образом, для конденсационного получения золей необходимо, чтобы концентрация вещества в растворе превышала растворимость, т.е. раствор должен быть пересыщенным. Эти условия являются общими как для образования высокодисперсного золя, так и обычного осадка твердой фазы. Однако, в первом случае требуется соблюдение особых условий, которые, согласно теории, разработанной Веймарном, заключается в одновременности возникновения огромного числа зародышей дисперсной фазы. Под зародышем следует понимать минимальное скопление новой фазы, находящееся в равновесии с окружающей средой. Для получения высокодисперсной системы необходимо, чтобы скорость образования зародышей была намного больше, чем скорость роста кристаллов. Практически это достигается путем вливания концентрированного раствора одного компонента в очень разбавленный раствор другого при сильном перемешивании.

Золи образуются легче, если в процессе их получения в растворы вводят специальные соединения, называемые защитными веществами, или стабилизаторами. В качестве защитных веществ при получении гидрозолей применяют мыла, белки и другие соединения. Стабилизаторы используют и при получении органозолей.

2. Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. п.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.