Смекни!
smekni.com

3. геологических задач (стр. 9 из 22)

Обсуждаемые метрологические средства характеризуются рядом других ограничений: не учитывают влияния давления и температуры, уровня шумов от движения прибора в скважине, отклонений в центрировании скважинного прибора и т.п. Тем не менее, они (метрологические средства) позволяют выявить при полностью собранном приборе влияние переходных процессов при возбуждении излучателей и коммутации каналов, влияние прямой волны по корпусу прибора на равномерность амплитудной характеристики и на ограничение временного интервала приёма первых и последующих вступлений без искажений; оценить численные значения измеряемых параметров, а также равномерность диаграмм направленности преобразователей в горизонтальной и вертикальной плоскостях. Более того, они позволяют определить, с каким зондом - дипольным или монопольным - ведётся работа, и оценить интенсивность сигналов дипольного зонда. Эти проблемы являются основными при оценке пригодности прибора для исследований. Учитывая невысокую стоимость существующих средств метрологической поверки и малые их габариты, можно ожидать, что они ещё послужат для контроля качества и стабильности метрологических характеристик приборов после их изготовления и в процессе эксплуатации.

На практике возникает другая проблема, связанная с разделением в волновом пакете интерферирующих между собой волн разных типов. Путь её решения, связанный с удлинением измерительных зондов, не самый удачный по двум причинам. Во-первых, для длинных измерительных зондов уменьшается отношение амплитуд регистрируемых сигналов к шумам. Во-вторых, усложняется эксплуатация длинных приборов, требующая их разборки в суровых климатических условиях, в которых расположены основные запасы нефти и газа страны. Основная тяжесть разделения волн в волновых пакетах и определения параметров волн (Dt, A, a, f) ложится на программное обеспечение, совершенствованию которого нет предела. Существующие в организациях контрольные скважины позволяют оценить сходимость результатов, полученных разными приборами при использовании того или иного программного обеспечения.

Второй подход связан с созданием метрологического обеспечения для измерения параметров волн поперечной и Стоунли. Этот путь не безнадёжен. Например, дипольный зонд, оснащённый излучателем с повышенной собственной частотой (6-10 кГц), позволяет измерить в отрезке стальной трубы скорость распространения волны Лэмба и поперечной волны. Если возбуждать в том же отрезке трубы волну Стоунли на низких частотах (2-4 кГц), для которых скважина является фильтром Р и S волн, то в первых вступлениях волнового пакета можно получить колебания St волны. Такой способ возбуждения реализован в приборе АВАК-7 [25]. Однако это - возможные пути поиска необходимых метрологических средств, а не достоверные способы их реализации.

3. РЕШЕНИЕ ГЕОЛОГИЧЕСКИХ ЗАДАЧ

Значения скоростей распространения, амплитуд и эффективного затухания волн, регистрируемые при АК, определяются большим количеством факторов: литологическим составом пород, их консолидацией и реологическими свойствами, структурой порового пространства, коэффициентами пористости и проницаемости, характером насыщенности, наличием обсадной колонны, полнотой заполнения затрубного пространства цементом и степенью его сцепления с колонной и горными породами, дефектами колонны и цементного кольца, свойствами жидкости в стволе скважины. В свою очередь, выявленные закономерности подвержены влиянию температуры и давления на глубине залегания исследуемых сред, интенсивности и частоты применяемых колебаний. Подобно другим исследователям, разработчики технических и методических средств АК пытались найти конкретные виды взаимосвязей параметров упругих волн с характеристиками горных пород и техническим состоянием скважин. Решения обратных задач (определения геологических и технических характеристик по значениям параметров упругих волн) отличаются большим разнообразием. В одних случаях это - достоверные решения, точность которых выше, чем по материалам остальных видов ГИС, в других - неоднозначность решений очень высока, но выявленные хотя бы общие закономерности облегчают решение задач по материалам других видов ГИС или их комплексов.

3.1. Литологическое расчленение пород

В отдельных литологических разностях осадочных пород (песчаник, алевролит, аргиллит, известняк и т.д.) скорости распространения и коэффициенты затухания Р и S волн зависят от минерального состава слагающих частиц, степени их уплотнения, сцементированности, величины и структуры порового пространства (межзерновые поры, трещины, каверны), характера насыщенности пород и изменяются в широких пределах. Вследствие влияния на параметры АК (Dtp, aр, Dts, as) многих факторов их применение позволяет уверенно выделить в разрезе только крупные литологические комплексы - песчаники, аргиллиты, карбонатные породы - без детального расчленения этих комплексов на более дробные разности - алевролиты, глинистые песчаники и т.п. ( табл.9 ). Исключение составляют гидрохимические осадки. Ангидриты, гипсы, галит (каменная соль) характеризуются близкими к постоянным значениями скоростей Р и S волн, которые незначительно изменяются с глубиной, что способствует однозначности их выделения.

Многочисленные попытки использования для литологического расчленения отношения скоростей vp/vs продольной и поперечной волн не улучшили возможности самостоятельного применения АК для решения этой задачи вследствие малых изменений значений vp/vs в различных породах ( табл.9 ). Увеличение пористости и трещиноватости пород определённой литологии (карбонатных) уменьшает значения скоростей продольной (vp) и поперечной (vs) волн, однако отношение vp/vs остаётся стабильным [102]. В работе [153] была показана лишь целесообразность применения отношения vр/vs для определения коэффициентов пористости сильно глинистых пород. Дифференциация пород весьма значительна, но предварительно по каким-либо материалам необходимо установить коэффициенты глинистости или общей пористости пород.

Таким образом, АК не имеет каких-либо преимуществ перед другими видами ГИС при детальном литологическом расчленении разрезов, которое следовало бы проводить по данным комплекса ГИС. Однако важным результатом работ, выполненных многочисленными зарубежными и отечественными исследователями по изучению возможностей такого расчленения, стало определение эмпирических значений интервальных времён (DtCK)p,s в идеальном непористом поликристаллическом минеральном скелете породы. Практикой интерпретации (определения коэффициентов Кп) показана стабильность и применимость этих значений для территорий, удалённых на тысячи километров.

3.2. Определение пористости пород с использованием измеренных значений Dtp

Определение коэффициентов Кп межзерновой (гранулярной) пористости (далее: "пористости") было практически первой задачей скважинной геофизики, которую начали решать с использованием материалов АК. В основу определения положено утверждение, что осадочные породы представляют собой гетерогенные среды, состоящие из зёрен минералов и флюидов в порах [48]. Эффективные свойства таких сред при малых размерах зёрен и пор и их множестве определяются концентрациями отдельных фаз, формой и степенью связи между фазами. При небольших различиях в упругих свойствах и плотности фаз (например, для смесей песчаник-аргиллит, известняк-доломит и т.д.) форма границ не имеет практического значения, и величины Dtp, Dts определяются, как средневзвешенные, в соответствии с объёмными концентрациями фаз. Такой подход может быть применён и при более значительных различиях свойств фаз (минеральный скелет породы, вода и нефть в порах), хотя для таких случаев он менее обоснован. Редко и неравномерно расположенные, по сравнению с длиной упругой волны, трещины и каверны не отвечают условиям гетерогенной среды, поэтому для определения их ёмкости применяют другие взаимосвязи, чем для пород с межзерновой пористостью.

Первым и наиболее простым по форме уравнением, удовлетворяющим высказанному выше утверждению, стало уравнение среднего времени [152]:

где DtCK - интервальное время в непористом минеральном скелете, выбираемое из табл. 9 ; DtЖ - интервальное время в жидкости, заполняющей поры, значение которого зависит от состава флюида, пластовых температур и давлений, минерализации пластовой воды. Значение последней постоянной изменяется от 570 мкс/м в предельно минерализованной воде до 640 мкс/м в пресной воде. Оно не всегда четко соответствует минерализации воды. В породах, насыщенных газом и, отчасти, нефтью, значение интервального времени в флюиде намного меньше, чем это следует из vГ и vh. Величину DtЖ следует рассматривать как подстроечную постоянную, значение которой в породах разной насыщенности близко к DtЖ для случая насыщения пород водой.

Лучшие результаты при определении пористости песчаников с использованием уравнения (2) получают для крепко сцементированных разностей, залегающих на глубинах более 2000 м. Для других глубин полученные значения Кп исправляют за уплотнение, ориентируясь на уплотнение глин с глубиной [48]. Для карбонатных пород поправку не вносят, если они залегают на глубинах более 700-1000 м.