Смекни!
smekni.com

Модель атома Резерфорда і Бора (стр. 2 из 3)

2. Модель атома Бора

2.1. Планетарна модель атома.

Найпростіший атом водню складається з позитивно зарядженого ядра з зарядом +е (протона) і знаходиться на якійсь орбіті негативно зарядженого електрона -е (тут е - абсолютна величина елементарного заряду, рівна 1,6 ·10-19 Кл). Будемо вважати, що протон спочиває, а електрон масою m робитьрух по круговій орбіті радіусом r.

Відповідно до теореми Віріала,

Таким чином, повна енергія електрона на орбіті в атомі водню дорівнює половині потенційної енергії:

Підкреслимо, що потенційна енергія електрона негативна, що відповідає тяжінню. Повна енергія також негативна, що відповідає зв'язаному стануелектрона. Чим менше радіус орбіти електрона, тим більше по абсолютній величині повна енергія електрона.

Більш складні атоми хімічних елементів складаються з позитивно заряджених ядер, причому заряд Z відповідає номеру елемента в періодичній таблиці елементів Д. И. Менделєєва. Навколо ядра по орбітах обертаються Z електронів, так що в цілому будь-який атом у нормальному стані електрично нейтральний.

Описана планетарна модель атома зовсім неприйнятна з погляду законів класичної фізики. Справа в тім, що, як випливає з законів електродинаміки Максвелла, будь-який заряд, що прискорено рухається випромінює електромагнітні хвилі. Тому електрон, рухаючись з центробіжним прискоренням v2/r по орбіті, поступово повинен втрачати енергію і колись упасти на ядро. Можна підрахувати час життя атома водню до моменту падіння електрона на ядро. Виявляється, що атом проіснував би усього близько 10-10 с.

2.2. Модель Бора.

.

Розвиваючи ядерну теорію Резерфорда, учені прийшли до думки, що складна структура лінійчатих спектрів обумовлена коливаннями електронів, що відбуваються усередині атомів. По теорії Резерфорда, кожен електрон обертається навколо ядра, причому сила притягання ядра врівноважується центробіжною силою, що виникає при обертанні електрона. Обертання електрона зовсім аналогічно його швидким коливанням і повинне викликати випромінення електромагнітних хвиль. Тому можна припустити електрон, що повертається випромінює світло визначеної довжини хвилі, що залежить від частоти обертання електрона по орбіті. Але, випромінюючи світло, електрон втрачає частину своєї енергії, в наслідок чого порушується рівновага між ним і ядром; для відновлення рівноваги електрон повинний поступово пересуватися ближче до ядра, причому так само поступово буде змінюватися частота обертання електрона і характер світла, що випускається їм. Зрештою, вичерпавши всю енергію, електрон повинний "упасти" на ядро, і випромінювання світла припиниться. Якби насправді відбувалася така безупинна зміна руху електрона, то і спектр виходив би завжди безупинний, а не з променями визначеної довжини хвилі. Крім того, "падіння" електрона на ядро означало б руйнування атома і припинення його існування. Таким чином, теорія Резерфорда була неспроможна пояснити не тільки закономірності в розподілі

ліній спектра, ні саме існування лінійчатих спектрів. У 1913 р. Н. Бор запропонував теоретичне пояснення моделі атома Резерфорда, засноване на відмові від ряду класичних уявлень, насамперед, на відмові від ствердження про безперервність класичних величин типу енергії і моменту імпульсу. Цим Бор заклав основи квантової теорії. Надалі багато в чому непослідовна модель Бора була замінена строгими законами квантової механіки

2.3. Основні положення квантової механіки

У запропонованій Бором теорії будови атома йому удалося з великим мистецтвом погодити спектральні явища з ядерною моделлю атома, застосувавши до останнього так називану квантову теорію випромінювання, введену в науку німецьким ученим-фізиком Планком. Сутність теорії квантів зводиться до того, що промениста енергія випускається і поглинається не безупинно, як приймалося раніш, а окремими малими, але цілком визначеними порціями - квантами енергії. Запас енергії випромінюючого тіла змінюється стрибками, квант за квантом; дробове число квантів тіло не може ні випускати, ні поглинати. Величина кванта енергії залежить від частоти випромінювання: чим більше частота випромінювання, тим більше величина кванта. Кванти променистої енергії називаються також фотонами.

Планк (Planck) Макс (1858-1947)

Всі елементи поглинають або випускають випромінення з фіксованими довжинами хвиль. Бор встановив відповідність між лініями атомного спектра і енергіями електронів в атомах. Значення енергій Бор назвав квантовими рівнями. Згідно цієї теорії електрон може перескакувати з одного Е- рівня на другий, випромінюючи або поглинаючи квант енергії.

D Е=Е2-Е1

D Е=h*n,

n - відповідає лінія спектра

2.4. Постулати Бора

Застосувавши квантові уявлення до обертання електронів навколо ядра, Бор поклав в основу своєї теорії дуже сміливі припущення, або постулати. Хоча ці постулати і суперечать законам класичної електродинаміки, але вони знаходять своє виправдання в тих разючих результатах, до яких приводять, і в тій цілковитій згоді, що проявляється між теоретичними результатами і величезним числом експериментальних фактів.

Постулати Бора полягають у наступному: Електрон може рухатися навколо не по будь-яких орбітах, а тільки по таких, котрі задовольняють визначеним умовам, що випливають з теорії квантів. Ці орбіти одержали назви стійких чи квантових орбіт.

Коли електрон рухається по одній з можливих для нього стійких орбіт, то він не випромінює. Перехід електрона з вилученої орбіти на більш близьку супроводжується втратою енергії. Загублена атомом при кожнім переході енергія перетворюється в один квант променистої енергії. Частота випромінюваного при цьому світла визначається радіусами тих двох орбіт, між якими відбувається перехід електрона. Чим більше відстань від орбіти, на якій знаходиться електрон, до тієї, на яку він переходить, тим більше частота випромінювання. Найпростішим з атомів є атом водню; навколо ядра якого обертається тільки один електрон.

Виходячи з приведених постулатів, Бор розрахував радіуси можливих орбіт для цього електрона і знайшов, що вони відносяться, як квадрати натуральних чисел: 1:2:3 : ... n Величина n одержала назву головного квантового числа. Радіус найближчої до ядра орбіти в атомі водню дорівнює 0,53 ангстрема. Обчислені звідси частоти випромінювань, що супроводжують переходи електрона з однієї орбіти на іншу, виявилися в точності співпадаючими з частотами, знайденими на досліді для ліній водневого спектра. Тим самим була доведена правильність розрахунку стійких орбіт, а разом з тим і можливість застосувати постулати Бора для таких розрахунків. Надалі теорія Бора була поширена і на атомну структуру інших елементів, хоча це було пов'язано з деякими проблемами через її новизну.

Теорія Бора дозволила розв’язати дуже важливе питання про розташування електронів в атомах різних елементів і установити залежність властивостей елементів від будови електронних оболонок їхніх атомів. В даний час розроблені схеми будови атомів усіх хімічних елементів. Однак, всі ці схеми це лише більш-менш достовірна гіпотеза, що дозволяє пояснити багато фізичних і хімічнихвластивостей елементів. Як раніш уже було сказано, число електронів, що обертаються навколо ядра атома, відповідає порядковому номеру елемента в періодичній системі. Електрони розташовані по шарах, тобто кожному шару належить визначене число електронів, що заповнюють чи насичують його. Електрони того самого шару характеризуються майже однаковим запасом енергії, тобто знаходяться приблизно на однаковому енергетичному рівні. Вся оболонка атома розпадається на кілька енергетичних рівнів. Електрони кожного наступного шару знаходяться на більш високому енергетичному рівні, чим електрони попереднього шару. Найбільше число електронів N, що можуть знаходитися на даному енергетичному рівні, дорівнює подвоєному квадрату номера шару:

N=2n*n,

де n-номер шару. Крім того, установлено, що число електронів у зовнішньому шарі для всіх елементів, крім паладію, не перевищує восьми, а в передостанньому - вісімнадцятьох. Електрони зовнішнього шару, як найбільш віддалені від ядра і, отже, найменш міцно зв'язані з ядром, можуть відриватися від атома і приєднуватися до інших атомів, входячи до складу зовнішнього шару останніх. Атоми, що позбавилися одного чи декількох електронів, стають заряджені позитивно, тому що заряд ядра атома перевищує суму зарядів електронів, що залишилися. Навпаки атоми що приєднали електрони, стають заряджені негативно. Утворені таким шляхом заряджені частки, якісно відмінні від відповідних атомів називаються іонами. Багато іонів у свою чергу можуть чи втрачати чи приєднувати електрони, перетворюючи при цьому чи в електронейтральні атоми, чи в нові іони з іншим зарядом.

3. Будова атома

Сусна теорія будови атомів базується на моделі Бора та дослідах Резерфорда, але тільки сучасні методи досліджень дозволяють пояснити будову атома більш докладно.

3.1. Орбіталі

Розглянемо просторове розташування електронів в атомі. У відповідності до принципу невизначеності Гейзенберга, положення та швидкість електрона не піддаються одночасному визначенню з певною точністю. Однак, не дивлячись на неможливість точного визначення положення електрона, можна вказати ймовірність знаходження електрона в певному положенні в любий момент часу. Частина простору, в якій дуже висока імовірність знаходження електрона, називається орбіталлю.