Смекни!
smekni.com

Управление большими системами (стр. 4 из 14)

Каждая система более высокого уровня объединяет в единое целое, прямо или косвенно подчиняет своим закономерностям все нижележащие. Верхние и нижние границы такого иерархического ряда биологической организации определяются переходом к иным категориям форм движения материи. Например, если химический элемент системы обмена веществ в клетке в свою очередь предста­вить как систему, организованную из атомов, то это уже не биоло­гическая, а химическая система. С другой стороны, системы жизни, связанные с деятельностью человека, выходят из рамок чисто био­логических, и на них накладывают свой отпечаток социальные зако­номерности.

Управление в биокибернетических системах как целесообразное саморегулирование

Сложная динамическая организация биокибернетической систе­мы требует непрерывного управления, без которого система не мо­жет существовать. Особенность этого управления состоит в том, что оно происходит на основе самоорганизации и приобретает активный характер.

Активность живых систем

Возможность поддержания определенного состояния в условиях варьирования многих переменных в саморегулирующейся на основе обратных связей системе наглядно демонстрирует гомеостат (У. Эшби, 1962). В живых организмах способность противостоять внешним воздействиям достигает степени активного поведения.

Для живых систем, как мы уже видели выше, особенно харак­терны процессы саморегуляции за счет непрерывной внутренней работы создания негэнтропии и неравновесных структур. При этом система не только противодействует влиянию факторов, ведущих к ее дезорганизации, и облегчает действие факторов, благоприят­ствующих повышению ее организованности, но в отсутствие тех и других факторов, движимая громадным объемом внутренней орга­низующей деятельности, может проявлять независимую от внешних условий, в данный момент обусловленную внутренними факторами так называемую спонтанную активность. Закрепление спонтанной активности во вновь возникающих структурах дает основу явлени­ям развития.

Это исключительное свойство живого долгое время служило поводом для виталистических рассуждений и лишь в свете концеп­ции современной теоретической биологии и физиологии находит свое место среди естественнонаучных понятий. Исключительнаяструктурная сложность и множественность обратных связей в био-кибернетических системах превращает процессы управления ими в процессы внутреннего саморегулирования по собственным законам организации системы, а термодинамическая неравновесность ведет к их проявлениям в форме спонтанной активности развития.

Поскольку процессы управления в живых системах осуществля­ются главным образом как внутренние саморегуляторные, то они определяются в основном внутренними законами биокибернетиче­ской организации. Эти законы, как было выяснено выше, обуслов­ливают преимущественное направление процессов преобразования системы в сторону возрастания упорядоченности и связаности ее элементов в структурном смысле и снижения значения энтропии в термодинамическом смысле. А. И. Берг (1963) считает даже, что все акты управления в кибернетических системах сопровождаются уменьшением энтропии.

Целесообразность саморегуляции

Из изложенного выше следует, что саморегулирование живой природы осуществляется не хаотично, а в определенном направле­нии, в виде решения задачи оптимизации ее биокибернетических систем. Большая сложность и вероятностное строение последних позволяют ей решать задачу оптимизации разными способами, а контроль решения через обратные связи стимулирует поиски но­вых способов до получения результата. С этой точки зрения получа­ет биокибернетическое определение такое специфическое понятие биологии, как целесообразность, которому также долгое время при­давали виталистический оттенок. По-видимому, в понятиях термо­динамики целью живой системы следует считать оптимизацию ее поведения в данных условиях, которая достигается путем увеличе­ния структурной и энергетической неравновесности со средой, вы­ражаемой функцией отношения негэнтропии к энтропии. Однако ввиду сложности биологической эволюции не всегда можно точно определить критерии такой оптимизации. Целесообразная саморе­гуляция является основной формой процессов управления в живой природе.

Цели системы биосферы и ее подсистем

Представление о целесообразности саморегулирования в живых системах, как механизме их приспособления к конкретным услови­ям существования освобождает понятие цели от телеологических и антропоморфических толкований. Такой взгляд находит поддерж­ку и среди философов (В. С. Украинцев, 1973). Исходя из этого представления цель биологической системы можно определить, как объективно проявляющееся направление активности, зависящее от ее организации и влияний окружающей среды.

Как уже было отмечено, общее направление активности биосфе­ры в целом идет в сторону повышения уровня организации и накоп ления свободной энергии устойчивого неравновесия. Однако роль основных подсистем земной жизни в достижении этой цели оказы­вается весьма различной.

Зеленые растения, используя силы (солнечная энергия) и мате­риалы (углекислота, вода, соли) неживой природы, создают пер­вичные органические соединения, несущие энергию устойчивого неравновесия. Они создали и продолжают поддерживать атмосфе­ру нашей планеты и являются базой для существования более вы­соких форм жизни. Поэтому направление активности или цель растительной подсистемы биосферы можно определить как первич­ный синтез биомассы из неорганических источников и создание ис­ходного негэнтропийного материала.

Масса живого вещества, созданная растениями, используется животными прямо (травоядные) или вторично (плотоядные) для преобразований в более высокооргаяизованные структуры свое­го тела. На основе этих преобразований возникают такие новые вы­сокоэффективные приспособительные функции, как двигательная и нервная, резко увеличивающие активность организмов. Общее

направление активности в животной подсистеме биосферы можно определить как прогрессивные преобразования биомассы, повыша­ющие ее структурную организацию и уровень негэнтропии.

Принципиальная особенность человеческой деятельности состо­ит, как известно, в использовании орудий труда. Тем самым впер­вые в истории развития жизни на Земле создание негэнтропии и преобразование биомассы было вынесено за пределы живого орга­низма и стало совершаться в искусственно организованных произ­водственных процессах, использующими материалы и силы как живой, так и неживой природы. Если растения и животные огра­ничены в использовании природных ресурсов «пропускной способ­ностью» обмена веществ в своих организмах, то человек снимает для себя эти ограничения и «всю природу превращает в его неорга­ническое тело» (К. Маркс, 1844) *. В отличие от растительной и жи­вотной цель человеческой подсистемы биосферы можно определить, как создание посредством орудий труда позволяющих создавать небиологическим техническим путем свободную энергию негэнтро­пии в искусственных системах, воспроизводящих процессы, осуще-

ствляемые до того лишь живой материей. Растения и животные вы­рабатывают термодинамическую и структурную энтропию в себе,

•человек вырабатывает ее машинами для себя.

Классификация механизмов саморегуляции

Классификация видов саморегулирования в живых системах

еще мало разработана. С. Н. Брайнес и В. Б. Свечинский (1963) предложили общую схему управления функциями организма на трех уровнях. Низший уровень нервной и гуморальной регуляции

«обеспечивает по интероцептивным сигналам постоянство основных

* См.: Маркс К., Энгельс Ф. Из ранних произведений. М., Госполит-/издат, 1956, с. 565.

(физиологнческих констант (кровяного давления, состава крови, температуры тела и т. д.). Средний уровень безусловнорефлектор-ного управления обеспечивает приспособительные реакции организ­ма в связи с изменениями его состояния (например, поведение голодного и сытого животного). Высший уровень условнорефлектор-ного управления обеспечивает по сигналам внешнего мира приспо­собительные изменения вегетативной сферы и целостного поведения организма.

Анализ процессов управления с учетом термодинамических кри­териев привел к выделению семи уровней целесообразного саморе­гулирования в ответ на- внешние так называемые энтропийные-факторы, повышающие внутреннюю энтропию живой системы-(В. И. Черныш, 1968): 1. Стабилизация путем поддержания посто­янными параметров системы при кратковременном действии слабых энтропийных факторов. 2. Адаптация путем перестройки внутрен­ней структуры и функций системы при длительном или постоянном действии слабых энтропийных факторов. 3. Самовосстановление путем создания новых структур взамен разрушенных кратковре­менным действием сильных энтропийных факторов. 4. Размноже­ние путем воспроизведения себе подобных для сохранения системы вида при действии факторов, уничтожающих отдельные особи. 5. Развитие путем объединения и реализации в одной системе всех предыдущих уровней саморегулирования при действии разнообраз­ных энтропийных факторов. 6. Эволюция путем переключения на использование новых видов веществ и энергии при действии энтро­пийных факторов истощения окружающей среды 7. Соревнование путем формирования структур и развития функций, противодейст­вующих влиянию энтропийных факторов, порождаемых деятель­ностью других биокибернетических систем.

В технике возможно четкое разделение управляющего устройст­ва и объекта управления (В. В. Солодовников, 1961). Однако в жи­вом организме они настолько переплетаются, что границу между ними бывает трудно провести. Например, когда образующиеся при переваривании пищи пептоны, всасываясь в кровь, вызывают усиленное выделение желудочного сока, который увеличивает обра­зование пептонов, то белковые вещества выступают в роли управ­ляющего устройства и в роли объекта управления. Более ясное разграничение управляющих и исполнительных структур имеет мес­то в системе движений (А. А. Гидиков, 1964). В управляющих воз­действиях предыдущих звеньев рефлекторного механизма на по­следующие проявляется принцип детерминирующей роли «станции отправления» (Г. Н. Крыжановский, 1975).