Смекни!
smekni.com

Меры защиты от прямого и косвенного прикосновения к токоведущим частям (стр. 3 из 4)

При случайном обрыве проводника PEN в наружной питающей линии или во внутренней разводке на участке ввода до электроустановки будет иметь место вынос потенциала фазы на все зануленные металлические корпуса электроприемников, подключенных после точки обрыва по ходу энергии. Цепь выноса потенциала: фаза – рабочая обмотка электроустановки – нулевой рабочий проводник - точка соединения нулевого рабочего и защитного проводников – нулевой защитный проводник – корпус. Наиболее вероятен такой обрыв в системе TN – C.

Для устранения этой опасности в сетях с глухозаземленной нейтралью выполняется многократное повторное заземление нулевого провода, а также применяются разновидности систем TN – C, TN – C – S и TN – S, отличающиеся между собой уровнем безопасности.

В системе TN – C – S однофазные линии внутренней проводки выполняются на двух, а трехпроовдными с выводом на розеточный разъем защитного проводника PE, заземленного в распределительном электрощите. В этой системе питания обрыв нулевого провода N не влияет на безопасность, а вынос потенциала возможен лишь при условии одновременного обрыва проводника PEN в питающей линии и повторного заземления проводника PE, что маловероятно.

В системе TN – S проводник PEN отсутствует, а значит, вынос потенциала фазы на корпус при обрыве нулевого или защитного проводников исключен. Эта система обладает наибольшей надежностью и безопасностью, но требует значительных дополнительных затрат, связанных с прокладкой дополнительного проводника от потребителя до подстанции. В связи с этим она не нашла широкого применения.

Заземление – преднамеренное соединение металлических частей электроустановок, нормально находящихся под напряжением с землей. Принцип действия защитного заземления заключается в том, что человек, который прикоснулся к корпусу оборудования, оказавшегося под напряжением, включается в цепь замыкания тока на землю параллельно с заземлителем. Так как сопротивление заземлителя значительно меньше сопротивления тела человека, большая часть тока пройдет через заземлитель и лишь незначительная – через тело человека. Областью применения защитного заземления в электроустановках до 1кВ являются системы электроснабжения видов IT и TT.

Защитное заземление электроустановок осуществляется их присоединением к естественным и искусственным заземлителям. В качестве естественных заземлителей используются любые электропроводящие элементы конструкции зданий и сооружений. К искусственным заземлителям относятся электроды, специально забиваемые в грунт.

Уровень защиты системы заземления в основном зависит от двух факторов – величины сопротивления заземления и надежности контакта в цепи «оборудование - заземлитель».

В качестве защитного устройства в системе ТТ следует рассматривать любое защитное устройство, отключающее питание от поврежденной электроустановки, однако высокий уровень электробезопасности в этой системе может обеспечить защитное заземление только в совокупности с УЗО, реагирующим на дифференциальный ток утечки.

Сущность способа уравнивания потенциалов как защитной меры от поражения током при косвенном прикосновении заключается в создании на определенной площади, на которой установлено электрооборудование и находятся люди, поля одинаковых потенциалов, равному потенциалу заземлителей, к которым присоединены корпуса этого оборудования.

В соответствии с законом распределения напряжения прикосновения ток, протекающий через тело человека, касающегося заземленного корпуса оборудования с поврежденной изоляцией, будет уменьшаться по мере приближения точки опоры человека к заземлителю. С этой точки зрения заземлитель следует располагать как можно ближе к оборудованию. Для устранения этого противоречия по всей площади пола помещения необходимо иметь равные потенциалы точек поверхности, близкие по величине потенциалу заземлителя. Это достигается устройством системы заземления в виде одного заземлителя, а в виде замкнутого контура, состоящего из совокупности вертикальных и горизонтальных металлических электродов, соединенных между собой и рассредоточенных по всей площади пола помещения или рабочей зоны.

Электрическое разделение сети как самостоятельный способ защиты или в дополнение к другим представляет собой разделение сети на связанные между собой участки, для которых используются специальные разделяющие трансформаторы или преобразователи. Разделяющие трансформаторы должны удовлетворять повышенным требованиям надежности в отношении исключения пробоя изоляции между первичной и вторичной обмотками.

Для обеспечения электробезопасности на предприятии должны выполняться следующие требования:

- должна иметься служба эксплуатации электроустановок и ответственное лицо за их безопасную эксплуатацию;

- техническое обслуживание и ремонт электроустановок должен проводиться специально обученным персоналом, имеющим соответствующую квалификацию и допуск на проведение работ;

- производство работ по обслуживанию и ремонту электрооборудования должно проводится в соответствиями с правилами безопасности работ на электроустановках;

- электротехнический персонал должен бить оснащен необходимыми средствами коллективной и индивидуальной защиты;

- плавкие вставки и предохранители в силовых цепях должны заменяться только на вставки калиброванные заводского изготовления;

- заземление и зануление должны быть исправны, проводники и шины заземления доступны для осмотра и окрашены в черный цвет;

- неисправности электроаппаратуры и проводов, которые могут вызвать искрение, нагревание элементов, короткое замыкание, а также провисание проводов, соприкосновение их с технологическим оборудованием и металлическими конструкциями зданий, должны немедленно устраняться;

- техническая документация по электробезопасности (журналы инструктажей, проверки знаний персоналом правил и норм безопасности, учета средств защиты, учета дефектов и аварий в электроустановках и т.п., инструкции по охране труда и др.) должна иметься в наличии и заполняться в соответствии с установленными требованиями.


3. Оптимизация защиты в распределительных сетях.

Последующее рассмотрение предполагает нормальные условия окружающей среды применительно к жилым общественным и производственным зданиям. Оптимальная защита достигается применением необходимых и достаточных мер защиты с учетом особенностей электроустановки.

Система распределения энергии

Оптимальная система защиты достигается для сетей с номинальным напряжением 230/400В при использовании зануления (система TN). Это объясняется следующими обстоятельствами.


Основная защита

Повреждение

Повреждение изоляции
Повреждение не видимо
Токоведущие части доступны прикосновению
Видимое повреждение

Следующая защита

Защита при повреждении
Защита от косвенного прикосновения
Защита от прямого прикосновения

Повреждение

Повреждение (отказ)
Защиты от косвенного прикосновения
Небрежный ремонт или
его отсутствие

Следующая защита

ДОПОЛНИТЕЛЬНАЯ ЗАЩИТАУЗО – Д с током установки не более 30мА

Рис.9 Меры защиты от поражения электрическим током


1. Потенциал доступных прикосновению проводящих частей (ОПЧ и СПЧ) при повреждении изоляции значительно ниже напряжения сети по отношению к земле вследствие относительно низкого сопротивления цепи обратного тока, роль которой выполняет PE- или PEN - проводник, в качестве которого используются жилы иметаллические оболочки кабелей, а также СПЧ.