Смекни!
smekni.com

Проектирование системы очистки воздуха при производстве растительного масла из семян подсолнечника (стр. 6 из 7)

Аэродинамическое встряхивание может осуществляется путем подачи импульса сжатого воздуха внутрь каждого фильтра. Такой вид регенерации используется в каркасных рукавных и плоских фильтрах.

Некоторое применение в рукавных фильтрах нашел способ регенерации перекручиванием рукавов вокруг оси (рис.3.17.ж). В результате крутки пылевой слой сваливается с рукава или ломается и удаляется с помощью продувки воздухом в обратном направлении. Самостоятельно этот способ обычно не применяется, а используется в качестве подготовки осадка пыли к более качественной очистке фильтровального материала. Недостатком этого способа является сложность механизма привода рукавов в крутящее состояние, износ рукавов в. местах крепления к вращающимся деталям. К механическому способу отряхивания пыли относится вибрационное отряхивание, которое применяется в основном для фильтров имеющих металлический каркас с натянутым фильтровальным материалом. Схема рукавного фильтра с такой системой регенерации приведена на рис. 3.17.е. В фильтровальной камере размещены фильтрующие рукава, натянутые на каркасы, которые прикреплены к подвижной плите, связанной через тягу с вибрационным механизмов. Вибрационная система отряхивания применяется в фильтрах с различной компоновкой фильтровального материала в рабочей камере, однако, необходимым условием применения является наличие каркаса, воспринимающего колебания от вибратора и передающего их фильтровальному материалу. Главным достоинством системы отряхивания с применением вибрации является возможность применения в таких фильтрах стеклоткани, натянутой на каркас. Обычно стеклоткани в каркасных фильтрах не применяются из-за быстрого их износа при трении о части каркаса или перелома волокон при ударе о каркас. В случае применения вибрации стеклоткань туго натягивается на каркасе и вибрация воспринимается без наличия движения материала относительно каркаса.

Возможность применения в каркасных фильтрах стеклотканей естественно расширяет сферу их применений в пределах, связанных с необходимостью очистки высокотемпературных газов. Эффективным методом регенерации фильтровального материала является обратная продувка очищенным газом или напорным воздухом (рис.3.17з). Обратная продувка как правило применяется в сочетании с другими способами: механическим встряхиванием, перекручиванием, вибрацией, покачиванием рукавов и др. Такие фильтры довольно эффективны, удобны в эксплуатации и обслуживании.

2.3 ПРИНЦИП РАБОТЫ ФИЛЬТРА

Пылегазовый поток поступает в коллектор запыленных газов через входной патрубок, движется вниз в бункер, огибает вертикальную перегородку, разделяющую коллектор и камеру запыленных газов, и распределяется по фильтровальным кассетам. В процессе фильтрования пыль осаждается на материале кассет, а газ выходит в камеру очищенных газов и через открытые отверстия в горизонтальной перегородке - в коллектор очищенных газов и далее через патрубок выводится из фильтра. Регенерация фильтра осуществляется посекционно, согласно программе, заложенной в устройство управления регенерацией. Перед началом регенерации секция отключается от потока фильтруемого газа с помощью поворотной заслонки. Регенерирующее устройство состоит из следующих основных составных частей: ресивера сжатого воздуха с выходящими из него магистральными трубами, которые через стенку фильтра входят в камеру чистого газа и расположены в ней параллельно друг другу над фильтровальной перегородкой; пневматических клапанов, которые перекрывают магистральные трубы на выходе из ресивера; импульсных труб, пересекающихся с магистральными трубами и имеющих сопловые отверстия над каждой открытой ячейкой фильтровальной секции. Сопловые отверстия располагаются над фильтровальной перегородкой на расстоянии 100 мм. Процесс регенерации осуществляется следующим образом. По команде управляющего устройства подается сигнал на закрытие поворотной заслонки. Через несколько секунд следует импульс сжатого воздуха. Сжатый воздух из магистральной трубы попадает в импульсные трубы и через сопловые отверстия остронаправленными струями входит в открытые полости ячеек. Происходит продувка фильтровальной перегородки. Через некоторый промежуток времени поворотная заслонка открывается и в секции продолжается процесс фильтрования. Поочередная регенерация остальных секций проводится с определенными интервалами времени. Выбор интервала задается в зависимости от характера роста гидравлического сопротивления фильтра.

2.4 РАЗРАБОТКА, ОСВОЕНИЕ ПРОИЗВОДСТВА И ВНЕДРЕНИЕ МАТЕРЧАТЫХ ФИЛЬТРОВ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ ГАЗОВЫХ ВЫБРОСОВ

В последние годы в передовых, технически развитых странах, в большинстве отраслей промышленности наметилась тенденция к расширению области применения рукавных фильтров, как одного из наиболее эффективных аппаратов очистки промышленных газовых выбросов. Такая тенденция обусловлена, во-первых, повышением требований к защите окружающей среды и, во-вторых, появлением и расширением производства новых фильтровальных материалов из синтетических волокон, способных работать в различных условиях применения, в различных конструкциях фильтров, с широким диапазоном применения различных способов регенерации. Эффективность пылеулавливания в тканевых фильтрах мало зависит от свойств пыли и ее начальной концентрации. Капитальные затраты значительно меньше, чем у электрофильтров. Основным условием успешной эксплуатации рукавных фильтров является контроль температуры и влажности, поступающих на очистку газов, обеспечение нормальной работы регенерирующих устройств, своевременное удаление уловленной пыли, контроль за состоянием фильтрующего материала. В последние годы рукавные фильтры нашли широкое применение для улавливания летучей золы на электростанциях, для очистки газов, образующихся при работе электродуговых сталеплавильных печей, для улавливания субмикронных частиц в производстве технического углерода, в системах аспирации при пересыпке, транспортировке, упаковке сыпучих высокодисперсных порошковых материалов. Сфера применения тканевых фильтров постоянно расширяется с расширением объема и ассортимента производства фильтровальных материалов. В большинстве отраслей промышленности тканевые фильтры стабильно обеспечивают эффективность пылеулавливания на уровне 99-99,9%. Гидравлическое сопротивление их лежит в пределах 1000-3000 Па, наработка на отказ определяется 10000-20000 час. Для различных отраслей промышленности требуются фильтры малой, большой и средней производительности. Фильтры малой производительности (условно до 30 тыс. куб. м в час) необходимы для малых аспирационных систем, участков пересыпки, транспортировки пылевидных материалов, для обеспечения различных технологических линий с целью предохранения от абразивного износа установленного оборудования или очистки технологических газов от пылевидных продуктов. Фильтры средней производительности (условно от 30 до 150 тыс. куб. м в час) требуются для очистки газов в черной и цветной металлургии, в производствах строительных материалов, в химии и нефтехимии. Фильтры этой группы наиболее распространены и вероятно составляют основную часть по объему выпуска всех рукавных фильтров. Особую проблему составляет высокоэффективная очистка газов в фильтрах большой производительности. Мировая практика имеет конструкции фильтрующих аппаратов, способных очищать отбросные газы с производительностью миллион и более куб. м газа в час. В основном такие аппараты используются в черной металлургии для очистки газов после мощных электродуговых сталеплавильных печей, в цветной металлургии - для очистки газов после печей производства кремния и выплавки алюминия, в энергетике - после котлов, сжигающих каменный уголь, в производстве строительных материалов - после мельниц и обжиговых печей. При решении проблемы высокоэффективной очистки газов небольших объемов, в свое время, были созданы и поставлены на серийное производство рукавные фильтры с импульсной регенерацией ткани, которые широко применяются в различных отраслях промышленности, в основном достаточно отработаны в отношении надежности и по заказам предприятий производятся в настоящее время Акционерным обществом "ФИНГО" в посёлке Семибратово, Семибратовской фирмой НИИОГАЗ, Кемеровским заводом ХИММАШ. Это фильтры типа ФРКИ и их модификации. Эти фильтры до сих пор широко применяются в аспирационных и технологических системах с производительностью по газу до 30 тыс.куб.м в час. Аналогичные фильтры выпускает Япония, Фирма "Хосокава" с поверхностью фильтрования от 5 кв.м до 250 кв.м. Фирма "Микропул" в ФРГ, фирма "ОПАМ" в Польше. Фильтры подобного типа широко распространены в Англии, Америке, Франции и других передовых странах. Необходимо отметить, что, как базовый образец фильтров общепромышленного применения, фильтр ФРКИ может еще многие годы с успехом применяться во многих отраслях промышленности без особых усовершенствований. По основным показателям он находится на уровне лучших мировых образцов и всякие искусственные, недостаточно продуманные новшества, введенные в его конструкцию, могут привести к потере основных преимуществ, заключающихся в простоте обслуживания, надежности и малой энергоемкости этих типов аппаратов. С целью расширения диапазона применения рукавных фильтров такого типа, Семибратовская фирма НИИОГАЗ провела конструктивную проработку различных модификаций базового образца применительно к конкретным специфическим условиям применения. В частности, разработана конструкция фильтра на базе ФРКИ с эллипсовидным сечением фильтровального элемента. Фильтр такой конструкции по некоторым показателям превосходит базовый образец ФРКИ. Это фильтры с выемом эллипсовидных каркасов в сторону. Сделана проработка документации на фильтры, способные работать во взрывоопасных средах. Производство таких фильтров освоено Кемеровским заводом "Химмаш". Другой новой конструкцией среди малых фильтров являются кассетные фильтры с ячейковой формой компоновки фильтровального элемента. Это фильтры ФКИ. Главное их преимущество заключается в значительном снижении габаритов за счет специальной компоновки, и второе - это удобство обслуживания в процессе замены фильтровальных элементов за счет быстросъемной кассеты. К настоящему времени Семибратовской фирмой НИИОГАЗ подготовлена документация на типоразмерный ряд таких фильтров. Проведены научно-исследовательские работы с применением опытных образцов полномасштабных фильтров в стекольной промышленности (на Ленинградском заводе художественного стекла), на шинном заводе в г. Ярославле, на строительных предприятиях г., Гомеля, в порошковой металлургии (на опытном предприятии Киевского института проблем материаловедения Академии наук Украины). Полученные результаты исследований подтверждают возможность широкого применения фильтров такого типа в различных отраслях промышленности. Таким образом, решается вопрос разработки и постановки на производство фильтров малой производительности общепромышленного применения. Для очистки газов с производительностью от 30 до 100-150 тыс. куб. в час, где требуются фильтры условно средней производительности, организациями научно-производственного объединения "Газоочистка" в свое время были разработаны и поставлены на серийное производство фильтры с двухсторонней импульсной продувной типа ФРКДИ, которые успешно закрывали такие переделы, как малые сталеплавильные печи, объединенные аспирационные системы узлов пересыпки, транспортировка пылевидных материалов на предприятиях строительных отраслей, аспирационные системы предприятий цветной металлургии. В плане обновления эти фильтры были заменены на более совершенные в части экономии затрат электроэнергии, снижения металлоемкости, повышения надежности. Разработаны и освоено серийное производство фильтров типа ФРИ трех типоразмеров на 630, 1250 и 1600 кв. м ткани они перекрывают диапазон очищаемых газов от 50 до 150 тыс. куб. м в час. Особую проблему составляет высокоэффективная очистка газовых выбросов после сталеплавильных печей большой производительности (40, 100 и 200 тонных печей), после печей выплавки кремния и алюминия в цветной металлургии, в этом случае очистке подвергаются газы с производительностью миллион куб.м. в час и более. За рубежом для этих целей используются рукавные фильтры. Так, фирма "Шарон стил" США использует рукавные фильтры для очистки газов после печей емкостью 115 тонн. Фирма "Кусибл стил Ко оф Америка'" США использует рукавные фильтры после сверхмощных печей емкостью на 160 тонн. Разработанные и поставленные на серийное производство у нас в стране высокопроизводительные рукавные фильтры типа ФРО практически являются сейчас основными аппаратами, которые с уверенностью могут закладываться в проекты для очистки больших объемов газов. Одним из существенных недостатков фильтров ФРО является его габаритность, обусловленная выбранным способом регенерации ткани, компоновкой фильтровального материала. В связи с этим, в Семибратовской фирме НИИОГАЗ проведены исследования и разработана документация на полномасштабный фильтр кассетной компоновки производительностью 700 тыс. куб. м в час. Опытный фильтр ФКИ- 8000 был изготовлен на Семибратовском заводе ГОА и смонтирован на Челябинском металлургическом комбинате "Мечел" (для очистки отходящих газов) после 100 тонной электродуговой сталеплавильной печи. Отличительной особенностью нового фильтра является кассетная компоновка фильтровальных элементов в виде ячейковой структуры, за счет чего значительно сокращены габариты аппарата, повышено удобство его обслуживания. Быстросъемная кассета, ремонт которой можно производить в стационарных условиях, содержит 28 кв. м фильтровальной ткани и занимает объем приблизительно 0,8 куб. м, что в несколько раз меньше по сравнению с рукавной компоновкой. Заводы технического углерода снабжаются в настоящее время довольно эффективными, отработанными фильтрами типа. ФР-5000 и ФР-250, корпуса, которых выполняются из коррозионно-стойких нержавеющих сталей. Фильтры работают на удельных газовых нагрузках 0,35 куб. м на кв. м в мин., естественно, что габариты и металлоемкость этих фильтров довольно значительные. Совместно с институтом технического углерода г. Омск Семибратовской фирмой НИИОГАЗ в свое время были разработаны новые фильтры с подводом и отсосом газа в период регенерации через бункерную часть, что позволяет поднять производительность фильтров, снизить энергетические затраты. В соответствии с намечаемыми планами новые фильтры ФРОТ-250 и ФРОТ-5000 предполагалось поставить на серийное производство взамен ФР-250 и ФР-5000. Однако, к сожалению, в связи с интенсивным снижением финансовых возможностей заказчиков и производителей, данная работа была приостановлена на стадии опытно-промышленного образца. Опытный образец фильтра ФРОТ-5000 был изготовлен, смонтирован на Волгоградском заводе технического углерода, прошел межведомственные испытания и рекомендован к серийному производству. Примерно такая же обстановка с разработкой нового фильтра для алюминиевой промышленности. По заявке ВАМИ разработана документация на высокопроизводительные фильтры для алюминиевой промышленности типа ФРИА-900 и для печей кремния типа ФРОК