Смекни!
smekni.com

Шпаргалка по Гидравлике (стр. 9 из 16)

2) Горизонтальное перемещение резервуара с жидкостью с постоянным ускорением а. В этом случае X=-a, Y=0, Z=-g. Закон распределения давления получим
После интегрирования с учетом граничных условий X=X0, Z=Z0, P=P0 получим закон распределения давления в следующем виде
Т.о. распределение давления в жидкости подчиняется основному закону гидростатики для любой фиксированной вертикали. Поверхность равного давления определится уравнением
После интегрирования
Или
Т.о. поверхностями равного давления будут плоскости, углы наклона которых к горизонтальной плоскости определяются угловым коэффициентом, равным –a/g.

3) Вращение цилиндрического сосуда с жидкостью с постоянной угловой скоростью В этом случае проекции массовых сил: X=

Z= -g. Поверхность равного давления определяется уравнением
Или проинтегрировав
Или учитывая, что
получим
. Откуда
Т.о. при вращении сосуда с жидкостью вокруг вертикальной оси поверхностями равного давления будет семейство параболоидов вращения, осью которых является ось Oz. Закон распределения давления получим
Или
После интегрирования с учетом граничных условий r =0, z=z0, p=p0 получим закон распределения давления:
- распределение давления подчиняется линейному закону для любой фиксированной круглоцилиндрической поверхности. В покоящейся ж. всегда присутствует сила Р, к-рая наз-ся гидростатическим давлением. Ж. оказывает силовое воздействие на дно и стенки сосуда. Частицы ж, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы ж, находящиеся у дна. Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости. Свойство 2. Гидростатическое давление неизменно во всех направлениях. Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

29. Схема, устройство и принцип действия осевого насоса. Достоинства и недостатки осевого насоса. Рабочее колесо ОН состоит из втулки, на к-рой укреплено несколько лопастей, представляющих собой удобообтекаемое изогнутое крыло с закругленной передней, набегающей на поток кромкой. Раб. колесо насоса вращается в трубчатой камере заполненной перекачиваемой ж. При динамическом воздействии лопасти на ж. за счет изменения скорости течения Р над лопастью повышается, а под ней понижается. Благодаря образующейся при этом подъемной силе основная масса ж. в пределах колеса движется в осевом направлении, что и определило название насоса. Двигаясь поступательно, перекач-ая ж. одновременно несколько закручивается рабочим колесом. Для устранения вращ. движения ж. служит выправляющий аппарат, через который она проходит перед выходом в коленчатый отвод, соединяемый с напорным трубопроводом. Ж. подводится к рабочим колесам небольших осевых насосов с помощью конических патрубков. У крупных насосов для этой цели служат камеры и всасывающие трубы относительно сложной формы. Осевые насосы выпускаются двух модификаций: с жестко закрепленными на втулке лопастями рабочего колеса и с поворотными лопастями. Изменение в определенных пределах угла установки лопастей рабочего колеса позволяет поддерживать высокое значение КПД насоса в широком диапазоне изменения его рабочих параметров. В качестве привода осевых насосов используются эл.двигатели синхронного и асинхронного типа, непосредственно соединяемые с насосом муфтой. Насосные агрегаты изготовляют с вертикальным, горизонтальным или наклонным валом. Подача серийно выпускаемых промышленностью осевых насосов колеблется от 0,5 до 45 м3/с при напорах от 2,5 до 27 м. Таким образом, по сравнению с центробежными осевые насосы имеют значительно большую подачу, но меньший напор. КПД высоко производительных осевых насосов достигает 0,9 и выше. В связи с проектированием систем межбассейновой переброски части стока рек ведутся работы по созданию крупных осевых насосов с подачей 100 м3/с и более при напорах от 2 до 20 м. Достоинства Эти насосы обеспечивают плавную и непрерывную подачу перекач-мой ж. при достаточно высоких значениях коэффициента полезного действия. Относительно простое устр-во обеспечивает их высокую надежность и достаточную долговечность. Отсутствие поверхностей трения, клапанов создает возможности для перекачивания загрязненных жидкостей. Простота непосредственного соединения с высокооборотными двигателями способствует компактности насосной установки и повышению её к. п. д. Они явл-ся основными насосами в хим. промышленности. К недостаткам относится ограниченность их применения в области малых производительностей и больших напоров, что объясняется снижением к. п. д. при увеличении числа ступеней для достижения высоких значений Н.

30. Схема, устройство и принцип действия пластинчатого насоса (ПН). Достоинства и недостатки ПН Изготавливают пластинчатые гидромашины однократного действия и двукратного действия. Известны также гидромашины многократного действия[2]. В машинах однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двукратного действия - два раза. Пластинчатые насосы могут использоваться в режиме гидромотора только в том случае, если в пространстве под пластинами расположены пружины, осуществляющие прижим пластин к корпусу статора. При отсутствии таких пружин насос не является обратимым. Принцип работы насоса однократного действия состоит в следующем. При сообщении вращающего момента валу насоса ротор гидромашины приходит во вращение. Под действием центробежной силы (или под действием силы упругости пружин, находящихся под пластинами) пластины прижимаются к корпусу статора, в результате чего образуется две полости, герметично отделённых друг от друга. Объём одной из полостей постепенно увеличивается (в эту полость происходит всасывание), а одновременно с этим объём другой полости постепенно уменьшается (из этой полости осуществляется нагнетание рабочей жидкости).Рисунок, поясняющий принцип работы пластинчатой гидромашины с двумя пластинами Изменение рабочего объёма в процессе работы возможно осуществлять только в машинах однократного действия. Однако в таких гидромашинах со стороны полости высокого давления на ротор действует постоянная радиальная сила, что приводит к более быстрому износу деталей гидромашины. В машинах двукратного действия полостей высокого давления — две, и радиальные силы скомпенсированы друг другом. Изменение рабочего объёма (регулирование гидромашины) осуществляется путём изменения эксцентриситита — величины смещения оси ротора относительно оси статора. Пластинчатые гидромашины способны работать при давлениях до 14 МПа [3], рекомендуемые частоты вращения обычно лежат в пределах 1000—1500 об/мин[3]. В сравнении с шестерёнными, пластинчатые гидромашины создают более равномерную подачу [4], а в сравнении с роторно-поршневыми и поршневыми гидромашинами — дешевле, проще по конструкции и менее требовательны к фильтрации рабочей жидкости. Пластинчатые гидромашины широко применяются в системах объёмного гидропривода (например, в приводе металлорежущих станков). Достоинства сравнительно низкая пульсация подачи (для насосов) и расхода (для гидромотора); достаточно низкий уровень шума; принципиальная возможность реализовать регулируемость рабочего объёма; хорошие характеристики всасывания (для насоса). Недостатки сложность конструкции и низкая ремонтопригодность; довольно низкие рабочие давления.