Смекни!
smekni.com

Экспериментальные исследования динамики смещений в разломных зонах (стр. 2 из 2)

Полученные экспериментальные данные о наличии динамических форм движения в зонах тектонических нарушений и вызванных ими знакопеременных деформаций и сдвижений влечет за собой серьезные фундаментальные и прикладные последствия. В фундаментальной области они, прежде всего, связаны с усугублением представлений о естественном напряженно-деформированном состоянии массива горных пород. К установленным сегодня гравитационным и тектоническим компонентам добавляется динамическая составляющая. при полученных горизонтальных деформациях сжатия-растяжения 1.27×10-3 и модуле упругости массива горных пород от 3000 МПа до 5000 МПа величины динамических напряжений составят от 3.9 до 6.4 МПа.

Если принять во внимание результаты обобщений (Brown & Hoek 1978; Sashourin 1999), в соответствии с которыми величина первого инварианта горизонтальных нормальных напряжений s1+s2 в приповерхностных слоях массива горных пород составляет от (16.3

1.1)МПа до (30.8
2.3)МПа, то динамические компоненты будут весьма существенными. При указанных выше параметрах первый инвариант динамических горизонтальных напряжений составит от 7.8 до 12.8 МПа, что сопоставимо с его значениями для статических компонентов. Этими величинами уже нельзя пренебрегать. Более того, необходимо учитывать их циклический знакопеременный характер. Наличие динамических сил в зонах тектонических нарушений, которые, по-видимому, имеют эндогенное происхождение, обуславливает многие особенности в развитии и существовании напряженно-деформированного состояния не только разломных зон, но и в целом массива горных пород. Но это выходит за рамки данного доклада и, вероятно, послужит темой другой работы.

Трудно переоценить роль динамических деформаций и в прикладной сфере. Все искусственные объекты, попавшие на тектонические нарушения с динамическими деформациями, безусловно окажутся под их воздействием, испытывая влияние усталостных эффектов от цикличного нагружения. В соответствии с полученными частотами, сооружения подвергнутся не менее 500000 циклов нагружения в год. В первую очередь воздействию динамических деформаций подвергаются протяженные подземные объекты, такие как магистральные газопроводы и нефтепроводы, водопроводы, теплотрассы, канализационные коллекторы, метрополитены и др.

Особое внимание динамике тектонических зон должно быть уделено на участках строительства и эксплуатации экологически опасных объектов, аварии на которых могут сопровождаться экологическими катастрофами. При этом следует иметь ввиду, что динамика может быть присуща и тектоническим нарушениям невысокого ранга. Поэтому обследование промплощадок ядерных отходов и других опасных объектов по фактору наличия динамики должно стать нормой.

Таким образом, инструментальными измерениями в зонах тектонических нарушений получены следующие результаты:

1. В зонах тектонических нарушений имеют место динамические деформации, величины которых в горизонтальной плоскости (сжатие-растяжение) достигают 1.27 х 10-3, а в вертикальной плоскости (наклон) до 2.69 х10-3. Наиболее четко проявляются гармоники колебаний с продолжительностью периодов в пределах 30-60 секунд и 30-60 минут.

2. Выявленные динамические деформации тектонических нарушений влекут за собой радикальный пересмотр представлений о формировании естественного напряженно-деформированного состояния массива горных пород, что имеет значение не только для геомеханики, но и для других наук о Земле.

3. Динамические деформации тектонических нарушений безусловно оказывают негативное воздействие на искусственные объекты. Серьезного внимания по этому факту требуют протяженные сооружения и экологически опасные объекты, такие как атомные электростанции и подземные хранилища атомных отходов.

Список литературы

1. Сашурин А.Д., Ручкин В.И., Панжин А.А., Дубовик В.В. Мониторинг напряженно-деформированного состояния верхней части земной коры на шахте Сарановская-Рудная //Проблемы геотехнологии и недроведения (Мельниковские чтения): Доклады Международной конференции 6-10 июля 1998 г. -Екатеринбург, УрО РАН, 1998. -C.192-198.

2. Кострюкова Н.К., Кострюков О.М. Динамика приливных деформационных процессов в локальных разломах земной коры v в связи с безаварийной эксплуатацией продуктопроводов //Геомеханика в горном дела - 2000: Доклады международной конференции. -Екатеринбург, ИГД УрО РАН, 2000. - С.295-305.

3. Панжин А.А. GPS-технологии в геодезическом мониторинге НДС техногенного участка. //Геомеханика в горном деле /ИГД УрО РАН. Сборник научных трудов. -Екатеринбург, 1999. -С.68-85.

4. Панжин А.А. Непрерывный мониторинг смещений и деформаций земной поверхности с применением комплексов спутниковой геодезии GPS //Геомеханика в горном деле - 2000: Материалы Международной конференции. -Екатеринбург: ИГД УрО РАН. -2000. -С.320-324.