Смекни!
smekni.com

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов (стр. 4 из 17)

- увеличение содержания малых примесей в атмосфере. Хозяйственная деятельность человека приводит к росту концентрации не только углекислого газа, но и ряда других газов, которые также усиливают парниковый эффект и способствуют повышению температуры нижних слоев воздуха: метан (CH4), окислы азота, озон и др.

Содержание метана в атмосфере, куда он поступает из болот, глубоких трещин в земной коре и некоторых других источников невелико (примерно 1 – 2 млн -1). В современную эпоху количество атмосферного метана быстро возрастает как в результате развития сельскохозяйственного производства (особенно расширения обильно орошаемых рисовых полей), так и в результате роста добычи природного газа.

Из окислов азота главное значение имеют N2O и NO2, концентрация которых составляет около 0,3 млн -1. Значительное количество окислов азота поступает в атмосферу при производстве минеральных удобрений и в результате некоторых других видов хозяйственной деятельности.

Есть основания считать, что хозяйственная деятельность оказывает влияние на рост озона (О3) в тропосфере. Увеличение массы тропического озона также должно усилить парниковый эффект в атмосфере.

В современном воздухе имеются также малые примеси, поступившие туда только из антропогенных источников – хлорфторуглеводороды (фреоны).

- рост производства энергии, который приводит к дополнительному нагреванию атмосферного воздуха. Имеются оценки количества тепла, которое выделяется в результате хозяйственной деятельности человека. В целом для Земли это количество на единицу поверхности невелико и составляет около 0,01 Вт/м2. Для наиболее развитых промышленных районов указанная величина на два порядка больше и достигает 2 – 3 Вт/м2. На территориях больших городов эта величина возрастает еще на один – два порядка, т. е. до десятков и сотен Вт/м2.

При изменении притока энергии, получаемой Землей от Солнца на 1% средняя температура у ее поверхности изменяется на 1,50С. Если считать, что производство тепла в результате деятельности человека составляет около 0,006% от общего количества радиации, поглощенной системой Земля – атмосфера, то соответствующее этому повышение средней температуры будет равно примерно 0,010С. Эта величина сравнительно незначительна, однако при резкой неравномерности размещения на поверхности Земли источников тепла, созданных человеком, в отдельных районах повышение температуры может быть значительно большим.

- другие факторы. К их числу можно отнести: увеличение массы антропогенного аэрозоля в атмосфере, орошение засушливых районов (понижение альбедо примерно на 0,10 [2]), строительство водохранилищ (понижение альбедо).

1.3 Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем

Несмотря на относительную недолговременность происходящих климатических изменений, уже сейчас можно выявить ряд вызванных ими последствий. В частности, к ним можно отнести:

· отступление горных ледников практически во всех широтных зонах;

· сокращение площади и уменьшение толщины морских льдов в Арктическом бассейне;

· уменьшение площади шельфовых ледников в Антарктиде;

· изменение структуры кораллов в тропических широтах;

· изменение границ и толщины снежного покрова в умеренных и высоких широтах;

· увеличение длины вегетационного периода;

· изменение сезонных амплитуд температуры воздуха и сезонных колебаний концентрации CO2 в атмосфере;

· прямое влияние увеличения концентрации CO2 на естественную и культурную растительность;

· смещение сроков наступления сезонных явлений в жизни растений и животных;

· расширение границ ареалов растений и животных к северу.

Так же как и в прошлом, криосфера, и, прежде всего горные ледники, является наиболее чувствительной частью глобальной климатической системы. В таблице 3 приведены следующие данные об уменьшении длины ледников (l,м/год), наблюдаемом начиная с конца прошлого века практически во всех районах земного шара.

Наиболее значительные изменения площадей горных ледников происходят в Центральной Европе, в Тропической Африке, Исландии и Азии. В Центральных Альпах объем ледников сократился на 10 – 20% в 1980 – 1990 гг. по сравнению с их объемами в 1970-е годы. Около половины ледников Исландии активно отступают в последние 20 – 25 лет. Площадь ледников Восточной Африки с начала века уменьшилась на 50 – 60%. В Средней Азии сокращение площадей горных ледников происходит быстрее, чем все известные сокращения за последние 12 тысяч лет[7].

Таблица 1. Уменьшение длины ледников с конца XIXдо конца XX веков [7]

Район Скалистые горы Шпицберген Исландия Норвегия Европа (Альпы) Центральная Азия Африка (Кения) Новая Зеландия
Период 1890-1974 1906–1990 1880– 1965 1880– 11990 1880– 1988 1874–1980 1893–1987 1844–1990
l,м/год -15,2 -51,7 -12,2 -28,7 -15,6 -9,9 -4,8 -25,9

Данные об изменении баланса массы ледников в различных горных районах после 1980-х годов по сравнению с предыдущим 20-летним периодом, показывают, что в горах Тянь-Шаня баланс массы ледников уменьшился в 1,9 раз, в Скалистых горах – в 2 раза, в Альпах – в 10 раз. В целом на Северном полушарии баланс массы горных ледников уменьшился в 1,3 раза при увеличении глобальной температуры на 0,380С.

Исследования также показали, что реакция горных ледников на современное глобальное потепление происходит с меньшим временным сдвигом, чем это предполагали ранее. Считалось, что реакция ледника на глобальное потепление может происходить через 70 – 80 лет, однако последние данные свидетельствуют о том, что она происходит не более чем через 10 – 20 лет.

Кислородно-изотопный анализ ледниковых кернов, взятых на больших высотах в Тибете, в Андах и в горах Тянь-Шаня, свидетельствует о быстром сокращении площади горных ледников и о быстром потеплении тропосферы в субтропических широтах за последние годы. Анализ ледяных кернов из Тибета и Тянь-Шаня подтверждает предположение, высказанное Хансеном о том. Что наиболее значимый сигнал современного глобального потепления может быть обнаружен в центральных районах Азиатского материка, как наиболее обширного и удаленного на значительное расстояние от океана, который сглаживает колебания температуры.

Заметные изменения в последние годы происходят и в состоянии морских льдов в высоких широтах обоих полушарий. Так, толщина льда к северу от Гренландии сократилась с 6 – 7 до 4 – 5 м, а температура воды в районе островов Северная Земля повысилась на 10С.

За период с 1978 по 1995 г. площадь морских льдов сократилась на 610 000 км2 или на 5,7%, причем наиболее существенное уменьшение площади произошло в 1990, 1993 и 1995 гг.

Эффективная толщина льда в Арктическом бассейне с 1970 по 1992 г. сократилась на 12 – 14 см, что составляет 3 – 4% средней толщины льда (3 м), т. е. в среднем она уменьшалась на 0,5 см в год.

Экспедиционные исследования последних лет отмечают необычайно высокую температуру воды в высоких широтах (севернее 75 – 770 с. ш.) в начале 90-х годов (положительная аномалия 0,5 – 10С). Как показала анализ этих материалов, современное потепление арктических вод не имеет аналогов в предшествующий период инструментальных наблюдений, при этом процесс потепления в высоких широтах начался не ранее 1988 г. и распространялся с запада на восток [7].

Рис. 1.1.3. Сокращение площади ледника в Антарктике за период с 1979 по 2003 гг.[22]

В состоянии ледникового покрова Антарктиды также происходят определенные изменения. Анализ 50-летних метеорологических рядов температуры воздуха и данных о состоянии ледников Антарктического полуострова указывает на устойчивый тренд потепления и разрушения ледников: площадь пяти из девяти шельфовых ледников в этом районе быстро уменьшается. Прибрежные моря очищаются ото льда примерно на месяц раньше по сравнению со среднемноголетними сроками. Отмечаются также и более поздние сроки образования льда (примерно на месяц) в прибрежных морях Антарктиды и в море Уэдделла. Таким образом, продолжительность безледного периода на морской акватории Антарктиды увеличилась не менее чем на 1 – 1,5 месяца.

По данным Е.И. Александрова, устойчивый тренд повышения температуры воздуха в районе Антарктиды отмечается уже более 30 лет.

Однако также имеются сведения об увеличении высоты Гренландского ледникового щита, как следствие увеличения осадков в высоких широтах. Этот процесс не противоречит развитию современного потепления, а, наоборот, согласуется с тенденцией изменения осадков в полярных широтах при развитии глобального потепления. Имеются данные об увеличении облачности (до 25%) в районе Антарктиды за последние 10 – 12 лет. Последствием этого процесса, с одной стороны, является увеличение осадков и скорости аккумуляции снега, а с другой – увеличение облачности может привести к тому, что океан в районе Антарктиды будет поглощать меньшее количество углекислого газа, а это вызовет усиление парникового эффекта.

Определенным индикатором современного глобального потепления являются данные об уменьшении площади и толщины снежного покрова в Северном полушарии и об изменении сроков вскрытия и замерзания крупных рек.