Смекни!
smekni.com

География электроэнергетики РФ (стр. 3 из 6)

В 1985-1993 гг. на берегу Саратовского водохранилища р. Волги были сооружены четыре энергоблока с модернизированными реакторами ВВЭР-1000. Каждый из энергоблоков электрической мощностью 1000 МВт состоит из реактора, четырех парогенераторов, одной турбины и одного турбогенератора. Балаковская АЭС является самой молодой станцией с энергоблоками нового поколения.

Курская атомная электростанция.

Станция сооружена в 1976-1985 гг. в самом центре европейской части страны в 40 км к юго-западу от города Курска на берегу р. Сейм. В эксплуатации находятся четыре энергоблока с уранографитовыми кипящими реакторами большой мощности (РБМК) электрической мощностью 1000 МВт каждый. На энергоблоках поэтапно и последовательно проводятся работы по повышению уровня их безопасности.

Ленинградская атомная электростанция.

Строительство АЭС началось в 1970 г. на берегу Финского залива к юго-западу от Ленинграда в г. Сосновый Бор. С 1981 г. в эксплуатации находятся четыре энергоблока с реакторами РБМК-1000. С пуском Ленинградской АЭС положено начало осуществлению строительства станций с реакторами такого типа. Успешная эксплуатация энергоблоков станции - убедительное доказательство работоспособности и надежности АЭС с реакторами РБМК. С 1992 г. Ленинградская АЭС - самостоятельная эксплуатирующая организация, выполняющая все задачи по обеспечению безопасной эксплуатации энергоблоков атомной станции.

Основные положительные свойства АЭС:

- их можно строить в любом районе, независимо от его энергетических ресурсов;

- атомное топливо отличается большим содержанием энергии;

- АЭС не делают выбросов в атмосферу в условиях безаварийной работы;

- не поглощают кислород.

Отрицательные свойства АЭС:

- существуют трудности в захоронении радиоактивных отходов. Для их вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле набольших глубинах в геологически стабильных пластах;

- катастрофические последствия аварий на АЭС вследствие не совершенной системы защиты;

- тепловое загрязнение используемых АЭС водоемов.

Важнейшей проблемой современной ядерной энергетики считается управляемый термоядерный синтез. Им серьезно принялись заниматься не менее 40 лет назад. И, начиная с середины 70-х гг., уже несколько раз объявлялось о переходе к строительству полупромышленной установки. Последний раз говорилось, что это может случиться к 2000г. Если это произойдет, то человечество будет располагать практически неисчерпаемым источником энергии. Но пока этого не произошло, делаются попытки, с каждым годом все более активные, использовать так называемые нетрадиционные и возобновляемые источники энергии. К наиболее важным таким источникам относят солнечную, ветровую, приливную, геотермальную энергию и энергию биомассы.

Альтернативная энергетика. Солнечная энергия.Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находится пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны.

Наиболее традиционным источником «нетрадиционной» энергии считается солнечная энергия. Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Проблема утилизации экологически чистой и притом бесплатной солнечной энергии волнует человечество с незапамятных времен, но только недавно успехи в этом направлении позволили начать формировать реальный, развивающийся рынок солнечной энергетики. К настоящему времени основными способами прямой утилизации солнечной энергии являются преобразование ее в электрическую и тепловую. Устройства, преобразующие солнечную энергию в электрическую, называются фотоэлектрическими или фотовольтаническими, а приборы, преобразующие солнечную энергию в тепловую, - термическими. Существует два основных направления в развитии солнечной энергетики: решение глобального вопроса снабжения энергией и создание солнечных преобразователей, рассчитанных на выполнение конкретных локальных задач. Эти преобразователи, в свою очередь, также делятся на две группы; высокотемпературные и низкотемпературные. В преобразователях первого типа солнечные лучи концентрируются на небольшом участке, температура которого поднимется до 3000°С. Такие установки уже существуют. Они используются, например, для плавки металлов. Самая многочисленная часть солнечных преобразователей работает при гораздо меньших температурах – порядка 100-200°С. С их помощью подогревают воду, обессоливают ее, поднимают из колодцев. В солнечных кухнях готовят пищу. Сконцентрированным солнечным теплом сушат овощи, фрукты и даже замораживают продукты. Энергию солнца можно аккумулировать днем для обогрева домов и теплиц в ночное время. Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно. Но из-за рассеивания солнечных лучей земной поверхностью для строительства силовой станции, сопоставимой по мощности с современными АЭС, понадобились бы солнечные батареи площадью 8 км2, собирающие солнечный свет. Высокая стоимость станций, необходимость больших площадей и высокая доля облачных дней в подавляющем большинстве регионов России, по-видимому, не позволят говорить о существенном вкладе солнечной энергии в российскую энергетику.Энергия ветра.

Различные виды нетрадиционных видов энергии находятся на различных стадиях освоения. Как это ни парадоксально, наибольшее применение получил самый изменчивый и непостоянный вид энергии – ветер. Особенно активно развивается ветроэнергетика – 24% в год. Сейчас это наиболее быстро растущий сектор энергетической промышленности в мире.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени – использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. В России к началу ХХ века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию. Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воздушный поток оно захватывает и тем больше энергии вырабатывает агрегат. Использование энергии ветра эффективно в районах со среднегодовой скоростью ветра более 5 м/с. В России это побережье Северного Ледовитого океана и Приморье. Наиболее перспективно уставать здесь ветроустановки для выработки электроэнергии для местных автономных потребителей. К сожалению, мощные ветряные системы оказывают нежелательное воздействие на окружающую среду. Они непривлекательны внешне, занимают большие площади, создают много шума, а в случае аварии очень опасны. К тому же стоимость сооружения таких систем вдоль побережий для выработки электроэнергии столь велика, что полученная ими энергия оказывается в несколько раз дороже энергии из обычных источников.

В России валовой потенциал ветровой энергии - 80 трлн. кВт/ч в год, а на Северном Кавказе - 200 млрд. кВт/ч (62 млн. т усл. топлива). (I,6) Эти величины существенно больше соответствующих величин технического потенциала органического топлива.

Таким образом, потенциала солнечной радиации и ветровой энергии в принципе достаточно для нужд энергопотребления, как страны, так и регионов. К недостаткам этих видов энергии можно отнести нестабильность, цикличность и неравномерность распределения по территории; поэтому использование солнечной и ветровой энергии требует, как правило, аккумулирования тепловой, электрической или химической. Однако возможно создание комплекса электростанций, которые отдавали бы энергию непосредственно в единую энергетическую систему, что дало бы огромные резервы для непрерывного энергопотребления.