Смекни!
smekni.com

Состояние геологической среды в районе расположения нововоронежской АЭС (стр. 2 из 2)

Гидрогеодинамика для промышленной площадки Нововоронежской атомной электростанции может рассматриваться в границах трехслойной фильтрационной модели, состоящей из двух водоносных горизонтов – четвертичного и верхнеде-

вонского, разделенных слабопроницаемым слоем глинистых пород [4]. Среднее значение отметки подошвы нижнего водоносного горизонта (кровли нижнещигровских глин) составило 65 м. Эта величина была принята за начало отсчета относительных уровней подземных вод и относительных отметок границ инженерно геологических элементов. Трещиноватые известняки нижнего водоносного горизонта и верхнещигровские глины промежуточного слоя по фильтрационным свойствам были приняты однородными. В пределах промышленной площадки интенсивность атмосферного питания принималась равной 20 мм/ год. Дебит водозабора «Промышленная зона» из нижнего водоносного горизонта оценивается равным 6000 м3/сут.

Разработанная и уточненная модель была использована для прогноза изменений гидрогеологических условий применительно к различным вариантам эксплуатации сооружений Нововоронежской атомной электростанции [2, 4]. Рассмотрен вариант эксплуатации пятого блока атомной электростанции при современной интенсивности техногенной инфильтрации. Целью данного расчета была оценка влияния водозабора «Промышленная зона», эксплуатирующего нижний водоносный горизонт, на окружающую среду. Результаты расчета показали, что эксплуатация водозабора практически не сказывается на уровне грунтовых вод верхнего водоносного горизонта. Для нижнего водоносного горизонта радиус влияния водозабора составляет около 2 км с максимальным понижением напора в районе водозабора на 4 м. Как показали расчеты, эксплуатация водозабора интенсивностью 6000 м3/сут. увеличивает максимальную разность напоров на промышленной площадке на 1, 4–4 м. Данные прогнозных расчетов показали, что при нормативной интенсивности техногенных утечек из сооружений действующих блоков, повышение уровня воды в верхнем горизонте не создаст угрозы подтопления сооружений пятого блока. Расчетный градиент фильтрационного напора в раздельном слое глин на два порядка меньше критического, что обеспечивает суффозионную устойчивость раздельного слоя глин [4].

С учетом анализа инженерно-геологических условий, литологического состава и физико-механических свойств грунтов в пределах промышленной зоны Нововоронежской АЭС выделены следующие геологические тела, осредненные по стратиграфическому и литологическому принципу

А. Современные отложения, включающие 1 –техногенные образования (tН), представленные песчаными, в меньшей степени, глинистыми грунтами со значительным содержанием строительного мусора.

Б. Отложения первой и второй надпойменных террас р. Дон, соответственно являющиеся основанием зданий и сооружений энергоблоков III, IV и V и представленные 2 – песками (a1-2QIII) мелкими (м), средней крупности (с), крупными (к) средней плотности и плотными, с отдельными прослоями рыхлых, от маловлажных до насыщенных водой, глинистыми. Пески распространены повсеместно и залегают на коренных верхнедевонских известняках под техногенными образованиями и отложениями почвенно-растительного слоя; 3 – глинами (a1-2QIII) от тугопластичных до твердых; 4 – суглинками (a1-2QIII) от мягкопластичных до твердых; 5 – супесями (a1-2QIII) от твердых до пластичных.

Глинистые грунты залегают в песчаной толще в виде прослоев и линз различной мощности (от нескольких сантиметров до 3 метров).

В. Девонские отложения верхнещигровской подсвиты, представленные 6 – глинами (D3sc2) от тугопластичных до твердых мощностью 0, 2–4, 3 м. Они имеют выдержанное распространение, залегают на известняках того же возраста и перекрываются аллювиальными отложениями первой и второй надпойменных террас; 7 – известняками (D3sc2) трещиноватыми, вскрытыми на несколько метров. Эти породы характеризуются плотной текстурой, местами трещиноватые, прочные: предел прочности на одноосное сжатие в среднем составляет 100 МПа.

Расчетные значения показателей физико-механических свойств для инженерно-геологических элементов, выделенных в активной зоне основания сооружений соответственно составляют: для песчаных грунтов – модуль деформации от 5, 6 до 30 МПа, угол внутреннего трения от 26 до 30°, удельное сцепление от 0 до 4 кПа; для глинистых четвертичных грунтов соответственно 17–30 МПа, 18–24°, 8–68 кПа, для девонских глин – 8, 7–24 МПа, 9–19°, 111 кПа.

Признаков проявления геологических процессов, негативно влияющих на устойчивость зданий и сооружений, не отмечено.

Таким образом, можно считать, что геологические условия промышленной площадки Нововоронежской АЭС отличаются устойчивостью по отношению к внешним естественным и техногенным факторам воздействия и не препятствуют продлению сроков эксплуатации существующих энергоблоков.

Выводы Более чем полувековая история развития ядерной энергетики однозначно свидетельствует о том, что вопросы безопасности в ядерных энергетических объектах однозначно должны стоять на первом месте и только потом собственно выработка электроэнергии. Главный критерий при выборе концепции безопасности – обеспечить устойчивый режим функционирования АЭС с уровнем безопасности, базирующемся на принципе глубоко эшелонированной защиты, соответствующей лучшим мировым показателям. В принятой Федеральной целевой программе [13] предпочтение отдается освоенным технологиям получения ядерной электроэнергии на основе модифицированных тепловых реакторов с водой под давлением (ВВЭР) и реакторов большой мощности канальных (РБМК). Вместе с тем ставится проблема продолжения эксплуатации уже существующих АЭС, поскольку успешное выполнение принятой Федеральной целевой программы без решения этой проблемы весьма затруднительно.

Многолетний опыт эксплуатации Нововоронежской АЭС показывает, что состояние геологической среды в районе расположения атомного энергетического объекта остается стабильно безопасным. Не зафиксировано никаких негативных изменений ни в геологических структурах и горных породах, их наполняющих, ни в составе и динамике циркулирующих подземных водных потоков, ни в инженерно-геологических условиях. Современное состояние геологической среды не препятствует дальнейшей работе существующих энергоблоков Нововоронежской АЭС и завершению строительства Нововоронежской АЭС-2. Необходимое условие – эффективное функционирование сети комплексного геолого-геофизического мониторинга.

Список литературы

1. Бочаров В. Л. Факторный анализ в гидрогеохимических исследованиях района Нововоронежской АЭС / В. Л. Бочаров, В. Г. Бунеева, Ю. М. Зинюков // Применение ЭВМ при гидрогеохимическом моделировании. Тез. докл. Всесоюз. семинара. – Л. : Ленинград. ун-т, 1991. – С. 38–39.

2. Бочаров В. Л. Влияние водохранилищ и АЭС на подземные воды / В. Л. Бочаров, А. Я. Смирнова, М. Н. Бугреева // Научное чтения. Всеурал. совещ. По подземным водам Урала и сопредел. территории. Тез. докл. – Пермь : Перм. ун-т, 1994. – С. 69–70.

3. Бочаров В. Л. Экологическая безопасность атомных электростанций Центральной России / В. Л. Бочаров // Междунар. науч. конф. «Биологические проблемы устойчивого развития природных экосистем». Тез. докл. Часть 1. – Воронеж : Воронеж. ун-т, 1996. – С. 19–21.

4. Готлиф А. А. Численное моделирование фильтрационных потоков в основаниях энергетических объектов // А. А. Готлиф, В. Д. Озерова, В. С. Прокопович // Основания, фундаменты и механика грунтов, 1997. – C. 10–14.

5. Елагин Ю. П. Реакторные установки отечественных АЭС / Ю. П. Елагин. – М. : ЦОИ, 1992. – 37 с.

6. Надежка Л. И. Тектоническая раздробленность кристалл. коры и характер современной сейсмичности территории Воронеж. кристалл. массива / Л. И. Надежка, М. А. Ефременко, О. М. Ипполитов // Геологические опасности. Мат. XV Всеросс. конф. с Междунар. участ. – Архангельск : Ин-т эколог. пробл. Севера, 2009. – С. 324– 327.

7. Надежка Л. И. О возможных причинах локальных землетрясений на территории Воронежского кристаллического массива / Л. И. Надежка [и др.] // Свойства, структура, динамика и минерагения литосферы Восточно-Европейской платформы. Мат. XVI Междунар. конф. Т. 2. – Воронеж : Научная книга, 2010. – С. 73–76.

8. Савко А. Д. Геология Воронежской антеклизы / А. Д. Савко // Труды НИИ Геологии Воронеж. ун-та. – Воронеж : Воронеж. ун-т, 2002. – Вып. 2. – 165 с.

9. Смирнова А. Я. Эколого-гидрогеохимические условия и геофизические свойства пород в зоне влияния Нововоронежской АЭС / А. Я. Смирнова, В. Л. Бочаров, А. П. Тарков // Природные ресурсы Воронежской области, их воспроизводство, мониторинг и охрана. – Воронеж : Воронеж. ун-т, 1995. – С. 55–57.

10. Смирнова А. Я. Оценка уровненного режима грунтовых вод и теплового загрязнения р. Дон в районе Нововоронежской АЭС по сообществам низших растений / А. Я. Смирнова, Г. А. Анциферова. Л. Н. Строгонова // Вестник Воронеж. ун-та. Сер.: Геол. – 2006. – № 1. – С. 207–216.

11. Тихонов М. Н. Ядерные энергетические установки: постижение реальности / М. Н. Тихонов, М. И. Рылов // Теоретическая и прикладная экология. – 2009. – № 3. – С. 48–56.

12. Трегуб А. И. Неотектоника территории Воронежского кристаллического массива / А. И. Трегуб. – Воронеж : Воронеж. ун-т, 2002. – 220 с.

13. Федеральная целевая программа «Развитие атомного энергопромышленного комплекса России на 2007–2010 годы и на перспективу до 2015 года» // Постановление Правительства Российской Федерации от 6 октября 2006 г. – М., 2006. – № 605. – 155 с.

14. Холмовой Г. В. Неоген-четвертичный аллювий и полезные ископаемые Верхнего Дона / Г. В. Холмовой. – Воронеж : Изд-во Воронеж. ун-та, 1993. – 98 с.