Смекни!
smekni.com

CALS-технологии 2 (стр. 4 из 8)

Эксплуатация изделия. Известно, что объемы разрабатываемой документации для сложного наукоемкого изделия очень велики. Поэтому традиционное бумажное документирование сложных изделий требует огромных затрат на поддержку архивов, корректировку документации, а также снижает эксплуатационную привлекательность и конкурентоспособность изделия.

Решение проблемы заключается в переводе эксплуатационной документации на изделие, поставляемой потребителю, в электронный вид. При этом комплект электронной эксплуатационной документации - интерактивные электронные технические руководства (ИЭТР), электронные справочники и др. следует рассматривать как составную часть интегрированной информационной модели изделия. Электронная документация может поставляться на электронных носителях (например, на компакт-дисках) или размещаться в глобальной сети Интернет. Стандартизация гарантирует применимость такой электронной документации на любых компьютерных платформах.

Эксплуатационная документация может содержать информацию различных типов в соответствии со стандартами CALS: ISO 10303 (STEP), ISO 8879 (SGML), ISO 10744 (HyTime) и MIL-PRF-28001C — для графической, текстовой и мультимедийной информации, MIL-PRF-28000A, MIL-PRF-28002C, MIL-PRF-28003A — для векторных и растровых графических иллюстраций.

Важно отметить, что в электронный вид может быть преобразована эксплуатационная документация, созданная ранее без использования компьютерных систем. Для изделий, уже находящихся в эксплуатации длительный период и спроектированных традиционными методами, задача поддержки документации не менее актуальна. В качестве примера можно привести опыт проектов, выполняемых в ВМФ и ВВС США по массовому переводу миллионов страниц руководств и листов чертежей в стандартизованный электронный вид. Полученная электронная документация размещается в специальных хранилищах на базах ВМФ и ВВС или непосредственно у производителей и доступна через компьютерные сети. При этом используются современные технологии сканирования, распознавания текста, векторизации чертежей и схем, создаются электронные справочники на целые изделия и отдельные системы.

2.3. Что дают CALS-технологии

CALS рассматривается как комплексная системная стратегия повышения эффективности всех процессов ЖЦ промышленной продукции, непосредственно влияющая на ее конкурентоспособность. Применение стратегии CALS является условием выживания предприятий в условиях растущей конкуренции и позволяет:

- расширить области деятельности предприятий (рынки сбыта) за счет кооперации с другими предприятиями, обеспечиваемой стандартизацией представления информации на разных стадиях и этапах жизненного цикла. Благодаря современным телекоммуникациям, уже не принципиально географическое положение и государственная принадлежность партнеров. Новые возможности информационного взаимодействия позволяют строить кооперацию в форме виртуальных предприятий, действующих в течение ЖЦ продукта. Становится возможной кооперация не только на уровне готовых компонентов, но и на уровне отдельных этапов и задач: в процессах проектирования, производства и эксплуатации;

- за счет информационной интеграции и сокращения затрат на бумажный документооборот, повторного ввода и обработки информации обеспечить преемственность результатов работы в комплексных проектах и возможность изменения состава участников без потери уже достигнутых результатов;

- повысить «прозрачность» и управляемость бизнес-процессов путем их реинжиниринга, на основе интегрированных моделей ЖЦ и выполняемых бизнес-процессов, сократить затраты в бизнес-процессах за счет лучшей сбалансированности звеньев;

- повысить привлекательность и конкурентоспособность изделий, спроектированных и произведенных в интегрированной среде с использованием современных компьютерных технологий и имеющих средства информационной поддержки на этапе эксплуатации;

- обеспечить заданное качество продукции в интегрированной системе поддержки ЖЦ путем электронного документирования всех процессов и процедур.

- сократить издержки производства и снизить стоимость продукции;

- сократить время создания изделия, его модернизации и увеличить его реальное время «жизни», функционирования в работоспособном состоянии за счет высокого качества и электронной поддержки во время эксплуатации.


3. Системы Автоматизированного ПРоектирования (CAD/CAM/CAE)

3.1. История развития

Термин САПР "Система автоматического проектирования" (в английской нотации CAD) появился в конце пятидесятых годов, когда Д.Т.Росс начал работать над одноименным проектом в Массачусетском Технологическом Институте (MIT). Первые CAD - системы появились десять лет спустя.

За последние 25 лет CAD - системы, как системы геометрического моделирования, были значительно усовершенствованы: появились средства 3D- поверхностного и твердотельного моделирования, параметрического конструирования, был улучшен интерфейс.

Несмотря на все эти усовершенствования, касающиеся, в основном, геометрических функций, CAD - системы оказывают конструктору слабую помощь с точки зрения ВСЕГО процесса конструкторского проектирования. Они обеспечивают описание геометрических форм и рутинные операции, такие как образмеривание, генерация спецификаций и т.п. Эти ограничения и чисто геометрический интерфейс оставляет методологию конструкторской работы такой же, какой она была при использовании чертежной доски. Развитие получили также системы автоматизации проектирования технологических процессов (CAPP) и программирования изготовления деталей на станках с ЧПУ (CAM). Однако, подобно CAD - системам, эти усовершенствования не затронули ПРОЦЕСС проектирования: CAPP - системы могут генерировать технологические процессы, но только при условии предварительного специального описания изделия с помощью конструкторско - технологических элементов. CAM - системой может быть использована геометрическая модель CAD - системы, но все функции CAPP - системы (проектирование технологии обработки)- перекладываются на инженера.

Помимо проектирования, инженерная деятельность связана с инженерным бизнесом и менеджментом. Сюда, в частности, входят автоматизированные системы управления производством (АСУПр). Эти системы обычно развиваются без какой - либо интеграции с САПР.

Итак, до последнего времени концепция автоматизации труда конструктора базировалась на принципах геометрического моделирования и компьютерной графики. При этом, системы компьютеризации труда конструкторов, технологов, технологов - программистов, инженеров - менеджеров и производственных мастеров развивались автономно и Инженерные Знания - основа проектирования, оставались вне компьютера. Такое положение не удовлетворяет современным требованиям к автоматизации. Сейчас необходима комплексная компьютеризация инженерной деятельности на всех этапах жизненного цикла изделий, которая получила название CALS (Computer Aided Life-cycle System) технологии. Традиционные САПР с их геометрическим, а не информационным ядром, не могут явиться основой для создания таких систем. Сегодня каждое изделие в процессе своего жизненного цикла должно представляться в компьютерной среде в виде иерархии информационных моделей, составляющих единое целое и имеющих соподчиненность .


Термин «САПР для машиностроения» в нашей стране обычно используют в тех случаях, когда речь идет о пакетах программ для автоматизированного проектирования (CAD), подготовки производства (CAM) и инженерного анализа (CAE). Существуют САПР и для других областей — разработки электронных приборов, строительного проектирования.
Идея автоматизировать проектирование зародилась в конце 50-х годов прошлого века, почти одновременно с появлением коммерческих компьютеров. А уже в начале 60-х ее воплотила компания General Motors в виде первой интерактивной графической системы подготовки производства. В 1971 г. создатель этой системы доктор Патрик Хэнретти (Patrick Hanratty) основал компанию Manufacturing and Consulting Services (MCS) и разработал методики, которые составили основу большинства современных САПР. Вскоре появились и другие CAD-пакеты. В то время они работали на мэйнфреймах и мини-компьютерах и стоили очень дорого — в среднем 90 тыс. долл. за одно рабочее место. Очевидно, что лишь крупные предприятия могли позволить себе идти в ногу со временем.
Одновременно стали появляться и первые CAM-программы, позволяющие частично автоматизировать процесс производства с помощью программ для станков с ЧПУ, и CAE-продукты, предназначенные для анализа сложных конструкций. Так в 1971 г. компания MSC.Software выпустила систему структурного анализа MSC.Nastran, которая до сих пор занимает ведущее положение на рынке CAE.
К середине 80-х годов системы САПР для машиностроения обрели форму, которая существует и сейчас. Но впереди их ждало много любопытных перемен. Появление микропроцессоров положило начало революционным преобразованиям в области аппаратного обеспечения — наступила эра персональных компьютеров. Но для трехмерного моделирования мощности первых ПК не хватало. Поэтому в 80-е годы поставщики «серьезных» средств автоматизации проектирования ориентировались на компьютеры на базе RISC-процессоров, работавшие под управлением ОС Unix, — они были намного дешевле мэйнфреймов и мини-машин. Параллельно снижалась стоимость ПО, и к началу 90-х средняя цена рабочего места снизилась до 20 тыс. долл. — САПР становились доступнее. Но в массовый продукт они превратились лишь тогда, когда компания Autodesk разработала свой знаменитый пакет AutoCAD стоимостью всего 1 тыс. долл. Правда, в те времена ПК были 16-разрядными, и их мощности хватало лишь для двумерных построений — черчения и создания эскизов. Однако это не помешало новинке иметь огромный успех у пользователей.
Наиболее бурное развитие САПР происходило в 90-х годах, когда Intel выпустила процессор Pentium Pro, а Microsoft — систему Windows NT. Тогда на поле вышли новые игроки «средней весовой категории», которые заполнили нишу между дорогими продуктами, обладающими множеством функций, и программами типа AutoCAD. В результате сложилось существующее и поныне деление САПР на три класса: тяжелый, средний и легкий. Такая классификация возникла исторически, и хотя уже давно идут разговоры о том, что грани между классами постепенно стираются, они продолжают существовать, так как системы по-прежнему различаются и по цене, и по функциональным возможностям. Следует добавить, что кроме универсальных САПР также выпускаются и различные специализированные продукты, например, для инженерного анализа, расчета трубопроводов, анализа литья металлов, проектирования металлоконструкций и множества других конкретных задач.