Смекни!
smekni.com

Дискретно-аналоговое представление (стр. 2 из 4)

2. Физическая трактовка процессов интерполяции сигналов

Основное математическое соотношение интерполяционной обработки:

, (8)

можно проиллюстрировать следующим образом (рисунок 3).

В качестве интерполяционной функции в этом примере используется функция

. Интервалы интерполяции
и обработки
должны последовательно сдвигаться по времени. Операцию интерполяции можно выполнить с помощью линейного фильтра с импульсной характеристикой вида:

. (9)

Рисунок 3

Для доказательства этого утверждения обозначим сигнал на входе и выходе линейного фильтра через

и
(рисунок 4):

Рисунок 4

Представим сигнал на входе линейного фильтра в виде последовательности кратковременных импульсов, площадь которых равна соответствующим выборкам

. (10)

Из свойств линейных систем следует, что сигнал на выходе равен:

(11)

Выражение (11) получается с учетом фильтрующего свойства δ-функции. Если импульсная характеристика линейного фильтра

удовлетворяет выражению (9), то соотношение (11) переходит в формулу для интерполяционной обработки:

. (12)

Идеальное восстановление функции на выходе линейного фильтра невозможно, т.к.:

-отклик на выходе линейного фильтра не может появиться раньше соответствующей выборки на входе;

-число выборок не равно бесконечности;

-АЧХ фильтра отличается от идеальной.

3. Задачи идеальной интерполяции

В общем случае формула интерполяции имеет вид:

, (13)

- оценка значения i-ой выборки,
- восстановленный первичный сигнал,

.

Интерполяция возможна в том случае, если в сигнале имеются корреляционные связи. Может быть поставлена задача оптимального выбора вида функции

, при которой ошибка интерполяции минимальна.

Рассмотрим задачу идеальной интерполяции сигнала при предположении, что

, т.е. отсутствуют внешние шумы и ошибки системы.

Пусть непрерывный первичный сигнал описывается корреляционной

функцией

. Требуется определить форму интерполирующей функции, обеспечивающей при заданных значениях коэффициента корреляции минимум СКО

. (14)

Можно показать, что в этом случае оптимальная интерполирующая функция имеет вид:

, (15)

где

- весовые коэффициенты, однозначно связанные со значениями коэффициентов корреляции в точках
,
.

Т.о., оптимальная интерполирующая функция может быть определена как взвешенная сумма функций времени равных корреляционной функции первичного сигнала. Как следствие этой теории может бать доказана следующая теорема:

Если на интервале интерполяции

корреляционная функция
и ее взвешенная сумма хорошо аппроксимируются полиномом, то использование этого приближения обеспечит среднеквадратическое приближение близкое к идеальному. Т.е. требуется хорошая аппроксимация не всей корреляционной функции, а только ее части, приходящейся на интервал интерполяции (рисунок 5).

Рисунок 5

Чем меньше

, тем точнее возможна аппроксимация в виде многочлена и тем проще могут быть аппроксимирующие полиномы. Проиллюстрируем эту теорему для сигнала с прямоугольным спектром (рисунок 6):

Рисунок 6

Известно, что в этом случае в соответствии с теоремой

В.А. Котельникова возможно разложение первичного сигнала в ряд:

, (16)

где

- частота опроса. В точках
интерполирующая функция равна:

. (17)

Сопоставим этот результат с выражением для идеальной интерполирующей функции:

. (18)

Чтобы эти формулы совпали, необходимо чтобы при

, а в случае
, т. е. чтобы корреляционная функция имела вид:

. (19)

Такой функцией корреляции обладает сигнал с прямоугольным спектром, а условие

при
приводит к требованию, чтобы частота опроса
.

Это соотношение не может быть использовано на практике по следующим причинам:

1. Сигнала с идеальным прямоугольным спектром не существует.

2. Число выборок

.

На практике при представлении регулярными выборками частота опроса выбирается исходя из соотношения

ж
, (20)

где

определяется формой спектра сигнала, а ж – коэффициент запаса, зависящий от вида интерполирующих полиномов и требуемых значений показателя верности.

4. Интерполяция алгебраическими полиномами

цифровой кодирование алгебраический полином

Как было показано выше, для первичных сигналов с разными корреляционными функциями необходимо использовать разные интерполирующие функции. Такой подход не приемлем для практики, т.к. требует выполнения большого объема предварительных работ для определения вида интерполирующих функций. Для преодоления этих затруднений возможны два пути:

1. Использование для группы сигналов с близкими корреляционными функциями интерполирующей функции одного вида.

2. Применение в качестве интерполирующих функций хорошо программируемых функций с выбором частоты опроса, обеспечивающих во всех случаях требуемую верность.

Второй путь наиболее прост, но приводит к завышенным частотам опроса и, следовательно, к увеличению загрузки радиолинии. Наиболее рациональным является комбинированное использование обоих путей.

Во многих случаях в качестве интерполирующих путей используются алгебраические полиномы низких степеней, в частности полиномы Лагранжа. Интерполирующая функция по Лагранжу записывается в следующем виде:

(21)