Смекни!
smekni.com

Мониторы 2 (стр. 2 из 3)

проводников, но и на всем пути распространения тока, что препятствует достижению высокого контраста. В активной матрице каждой точкой изображения управляет свой электронный переключатель, что обеспечивает высокий уровень контрастности.

Рассмотрим основные характеристики жидкокристаллических мониторов.

Время отклика является характеристикой, показывающей, насколько быстро каждый пиксель, формирующий изображение на мониторе, может изменить свой цвет на заданный. Извечная проблема жидкокристаллических мониторов в том, что изображение на них изменяется с гораздо меньшей скоростью. В результате, на жидкокристаллических мониторах с большим временем отклика при динамичном изменении картинки можно увидеть «замыливание» картинки, когда границы движущегося объекта размываются и теряют свою четкость. Современные жидкокристаллические мониторы практически избавились от данной проблемы, за редким исключением (о чем речь пойдет немного позже).

По общему правилу, чем меньше время отклика, тем лучше. Стоит отметить, что методы измерения производителями времени отклика различны, и обычно указываемое производителями время отклика мало что может сказать о том, как тот или иной монитор поведет себя в реальных приложениях. Обычно времени отклика порядка 8 мс и менее для комфортного просмотра фильмов и динамичных игр более чем достаточно.

Так как время отклика является одной из проблемных характеристик монитора и практически главной характеристикой, на которую делают упор маркетологи фирм производителей, инженерами была разработана технология, позволяющая уменьшить данную характеристику – компенсация времени отклика (RTS). Однако данная технология принесла с собой не только положительные стороны, но и артефакты «разгона» матриц. В последних моделях мониторов с такой технологией количество артефактов разгона значительно уменьшилось, но говорить об их отсутствии пока рано.

Контрастность жидкокристаллического монитора есть отношение уровня белого цвета (максимальная яркость которого в центре экрана и называется яркостью монитора) к уровню черного. Грубо говоря, от контрастности зависит, насколько черный цвет будет выглядеть черным, а не серым, на экране вашего монитора. Производители указывают контрастность от 500:1 до 3000:1. Но чаще всего это паспортная контрастность матриц, используемых в данных мониторах, которая измеряется производителями на специальных стендах в специальных условиях и не учитывает влияние электроники конкретной модели монитора. Некоторые производители в качестве значения контрастности монитора указывают так называемую «динамическую» контрастность. Обладающие данной технологией мониторы оценивают отображаемое в данный момент изображение и, в зависимости от преобладания светлых или темных тонов, соответственно изменяют яркость подсветки матрицы. Уровень черного измеряется при минимальном значении яркости, а уровень белого – при максимальном, что не совсем честно, так как недостижимо в реальности в каждый отдельный момент времени. Следует также отметить, что при разных значениях яркости монитора контрастность будет также весьма различна, а яркость, необходимая для комфортной работы с текстом, к примеру, значительно ниже яркости, необходимой для просмотра видеофильмов и игр.

Еще одной из важнейших характеристик жидкокристаллических мониторов являются углы обзора. Если изображение на мониторах с ЭЛТ практически не изменяется даже при взгляде на него сбоку, то в случае жидкокристаллических мониторов все обстоит совершенно иным образом – изображение существенно меняется, а при взгляде сверху или снизу явно видно падение контрастности и искажение цветопередачи. Производители указывают в качестве значений углов обзора 160º даже для самых недорогих панелей, т.к. измеряют эти углы при условии падения контрастности до значений 10:1 (а некоторые и 5:1) в центре экрана, что совершенно неприемлемо с точки зрения возможности работы за монитором при таких значениях.

Цветопередача жидкокристаллического монитора – это характеристика, показывающая, насколько полно и точно монитор отображает видимый человеческому глазу цветовой спектр. Для современных мониторов это число традиционно указывается равным 16 миллионам, что совершенно ничего не говорит о качестве цветопередачи в принципе. Данный параметр важен в первую очередь тем, кто собирается использовать монитор для профессиональной работы с цветом либо редактирования цифровых изображений.

От типа матрицы в подавляющем большинстве случаев зависят все остальные характеристики монитора, в том числе и цена. В современных мониторах применяются 3 основных типа матриц – S-IPS, PVA/MVA и наиболее распространенный– TN+film.

Характеристика

TN+film

PVA / MVA

S-IPS

Время отклика без RTC / с RTC

Среднее / Минимальное

Большое / малое

Среднее / Минимальное

Контрастность

Средняя

Большая

Средняя

Углы обзора

Малые

Большие

Большие

Цветопередача

Плохая

Средняя

Хорошая

Цена

Минимальная – средняя

Средняя – высокая

Высокая

Как видно из таблицы, мониторы на TN+film проигрывают остальным по характеристикам, но являются, тем не менее, наиболее распространенными из всех в силу одного существенного фактора – цены.

В силу особенностей технологии жидкокристаллические мониторы предназначены для показа изображения только в одном, так называемом «родном» разрешении, совпадающем с физическим количеством пикселей по горизонтали и вертикали. Выставление разрешения ниже, чем физическое, приводит к видимым искажениям и артефактам.

В настоящее насчитывается три основных соотношения сторон экрана монитора:

─ традиционное 4:3, только в моделях с диагональю 15", 20" и 21";

─ нестандартное соотношение сторон 5:4 – оно более приближено к квадрату, что несет определенные преимущества при работе с текстом – и неудобство при просмотре фильмов, подавляющее большинство которых выпускаются в широкоэкранном варианте;

─ стремительно набирающее популярность соотношение 16:10, или так называемые широкоэкранные (wide) мониторы – в силу особенностей физиологии, человеческий глаз более приспособлен к восприятию широкоэкранного изображения, нежели приближенного к квадратному. Однако старые программы и игры разрабатывались для соотношения сторон 4:3, без поддержки широкоэкранных мониторов.

3. Технологии будущего

3.1. Плазменные экранные матрицы (PDP)

Прообразом для создания плазменных экранных матриц (Plasma Display Panels) стали самые обычные лампы дневного освещения. Плазменные мониторы состоят из полой стеклянной панели, заполненной газом. На поверхность внутренней стороны стенок выведены микроскопические электроды, образующие две симметричные матрицы, а снаружи эта конструкция покрыта слоем люминофора. Когда на контакты подается ток, между ними возникает крошечный разряд, который заставляет светиться (в ультрафиолетовой части спектра) располагающиеся рядом молекулы газа. Следствием этого является освещение участка люминофора, как это происходит в обычных CRT-мониторах.

Основные плюсы этой технологии это: во-первых, плазменные мониторы выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения; во-вторых, в их габаритах составляющая толщины представляет собой ничтожно малую долю. Основные минусы, не позволяющие использовать эту технологию для производства мониторов, это низкая разрешающая способность и крайне высокая энергоемкость. Кроме того, стоимость таких устройств является заоблачной для массового пользователя. Да и проблемы с цветопередачей для PDP также актуальны, как и для всех прочих решений, отличных от CRT.

3.2. Светоизлучающие пластики (LEP)

Иная альтернатива развития мониторов, не связанная с существующими наработками - технология изготовления и использования дисплеев на основе так называемых светоизлучающих пластиков.

Светоизлучающие пластики (Light Emission Plastics) - сложные полимеры с рядом интересных свойств. Вообще-то, использование пластических полимерных материалов в качестве полупроводников началось уже довольно давно, и встретить их можно в самых различных отраслях техники, в том числе и в бытовой электронике, включая персональные компьютеры. Однако некоторые представители этого семейства обладали и довольно необычным свойством - способностью эмитировать фотоны под воздействием электрического тока, то есть светиться.

Поначалу КПД полимерных светильников был крайне низким, и соотношение излучаемого света к затраченному потоку электронов измерялось долями процента. Но в последнее время компания Cambridge Display Technology существенно продвинулась в разработке светоизлучающего пластика и повысила эффективность этих материалов в сотни раз. Сейчас с уверенностью можно сказать, что LEP сравнились по своей функциональности с привычными светодиодами. Поэтому на повестку дня стал вопрос об их практическом применении.